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THE POPULATION CONSEQUENCES OF LIFE HISTORY 

PHENOMENA 


BY LAMONT C. COLE 

Department of Zoology, Cornell University 

PREFACE 


F branches of biology have attracted 
more analytical mathematical treatment 
than has the study of populations~Despite 
this, one may read in the most complete 
treatise of ecology yet published (Allee, 

et al., 1949, p. 271) that population 
ecology has not advanced to a great degree in 
terms of its impact on ecological hi^ 
unfortunate gap between the biologists and the 

mathematicians has elicited comments which need 
not be repeated in detail here ( ~ l l ~ ~ ,  ~1934; G  
1934; Allee et al., 1949, p. 386). The neglect of the 
analytical methods by biologists may be attrib-
uted in part to the tendency of writers in this field 
to concentrate on the analysis of human popula- 
tions and in part to skepticism about the mathe- 
matical methods of analysis. Early analyses of 
population growth (Verhulst, 1838, 1845; Pearl 
and Reed, 1920) employed human populations as 
examples, although i t  is clear from other publi- 
cations (e.g., pearl and ~ i ~ ~ ~1935; pearl, 1937) 
that comparative and general population studies 
were the principal interest of some of these stu- 
dents. Similarly, the pioneer works of ~ ~ 
(1907b, 1910, 1925) were very general in concep-
tion but made their greatest impact in the field of 
demography (Dublin and Lotka, 1925; Dublin, 
Lotka, and Spiegelman, 1949). The skepticism 
expressed by biologists toward theoretical studies 
has ranged from antagonism (Salt, 1936) to ap- 
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proval given with the warning that ". . . for the 
sake of brevity and to avoid cumbersome expres- 
sions, variables are omitted and assumptions made 
in the mathematical analyses which are not justi- 
fied by the biological data" (Allee, 1934). I t  may 
be unfortunate that warnings about mathematical 
oversimplification are especially pertinent in con- 
nection with the study of interactions between 
species (Ross, 1911; Lotka, 1920, 1925; Volterra, 

and '935; Thomp- 
son, 1939), which is just that portion of the subject 
which has remained most closely associated with ~ ~ ~ ,

Hence we have a situation in 
which the analytical theories which are recognized 
by ecologists deal with complex phenomena and 
are susceptible to cogent criticisms (e.g.1 Smith, 
1952) while the simpler analysis of the ways in 
which differences between the life histories of 
species may result in different characteristics of 
their populations has remained relatively unex-
plored' I t  is the purpose Of the present paper to 
consider some parts of this neglected branch of , 

which has been "biodemogra~h~'l 
by Hutchinson 

I t  is possible, but Often impracticable, to com- t k ~ 
pute exactly the characteristics of the hypothetical 
future population obtained by assuming an un-
varying pattern of the pertinent life history fea-
tures which govern natality and mortality. I t  is 
often more practicable to employ approximate 
methods of computation of the type which have 
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aroused skepticism among biologists. I t  will be 
shown that the two approaches can be reconciled 
and that for many cases of ecological interest they 
lead to identical conclusions. Some of these con- 
clusions reached by the writer have appeared sur- 
prising when first encountered, and they seem to 
give a new perspective to life history studies. 
They also suggest that pertinent bits of informa- 
tion are frequently ignored in life history studies 
simply because their importance is not generally 
recognized. 

The total life history pattern of a species has 
meaning in terms of its ability to survive, and 
ecologists should attempt to interpret these mean- 
ings. The following sections are intended primarily 
to indicate some of the possibilities in this direc- 
tion. The writer wishes to express his gratitude to 
Professor Howard B. Adelmann for a critical 
reading of the manuscript of this paper, for sug- 
gesting numerous ways of clarifying the text and 
improving terminology, and for translating from 
the Latin parts of the text from Fibonacci (1202). 
Thanks are also due to Professors Robert J. 
Walker and Mark Kac who have been consulted 
about technical mathematical questions raised by 
the writer while considering various phases of this 
subject. 

INTRODUCTION 

If it is to survive, every species must possess 
reproductive capacities sufficient to replace the 
existing species population by the time this popu- 
lation has disappeared. I t  is obvious that the 
ability of the ancestors of existing species to replace 
themselves has been sufficient to overcome all 
environmental exigencies which have been en-
countered and, therefore, that the physiological, 
morphological, and behavioral adaptations that 
enable offspring to be produced and to survive in 
sufficient numbers to insure the persistence of a 
species are of fundamental ecological interest. 

On the other hand, it is conceivable that repro- 
ductive capacity might become so great as to be 
detrimental to a species. The many deleterious 
effects of overcrowding are well known. I t  also 
seems obvious that a species which diverts too 
large a proportion of its available energies into 
unnecessary, and therefore wasteful, reproduction 
would be a t  a disadvantage in competition with 
other species. 

In  this paper it will be regarded as axiomatic 
that the reproductive potentials of existing species 

are related to their requirements for survival; 
that any life history features affecting reproductive 
potential are subject to natural selection; and that 
such features observed in existing species should 
be considered adaptations, just as purely morpho- 
logical or behavioral patterns are commonly so 
considered. 

Some of the more striking life history phenomena 
have long been recognized as adaptations to special 
requirements. The great fecundity rather generally 
found in parasites and in many marine organisms 
is commonly regarded as an adaptation insuring 
the maintenance of a population under conditions 
where the probability is low that any particular 
individual will establish itself and reproduce suc- 
cessfully. Again, parthenogenesis obviously favors 
the rapid growth of a population because every 
member of a population reproducing in this fashion 
can be a reproductive female. In  turning seasonally 
to parthenogenesis, organisms like cladocerans and 
aphids are responding in a highly adaptive way 
during a limited period of time when the environ- 
mental resources are sufficient to support a large 
population. Parthenogenesis, hermaphroditism, 
and purely asexual reproduction may clearly offer 
some advantages under conditions that restrict the 
probability of contacts between the sexes. Protan-
dry, as exhibited, for example, by some marine 
molluscs, and various related phenomena where 
population density affects the sex ratio (Allee et al., 
1949, p. 409) may be considered as compromise 
devices providing the advantages of biparental 
inheritance while maintaining an unbalanced sex 
ratio which makes most of the environmental re- 
resources available to reproductive females. 

Reproductive potentialities may be related to 
the success of a species in still other ways. I t  was 
an essential part of Darwin's thesis that the pro- 
duction of excess offspring provided a field of 
heritable variations upon which environmental 
conditions could operate to select the most favor- 
able combinations. A high degree of fecundity may 
also aid the dispersal of species. An extreme ex- 
ample of this is afforded by the ground pine, 
Lycopodium (Humphreys, 1929), whose light wind- 
borne spores may be scattered literally over the 
whole face of the earth and so make it likely that 
all favorable habitats will come to be occupied. 
Another adaptational interpretation of the over-
production of offspring postulates that the exces- 
sive production of young fish which are frequently 
cannibalistic is a form of maternal provisioning, 
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the majority of the young serving merely as food 
for the few that ultimately mature. 

Many additional examples of life history phe- 
nomena that have been regarded as adaptive could 
be cited. Here, however, we wish rather to call 
attention to the striking fact that in modern 
ecological literature there have been relatively few 
attempts to evaluate quantitatively the importance 
of specific features of life histories. The apparent 
mathematical complexity of the general problem 
is undoubtedly partly responsible for this. When 
the biologist attempts to compute from observed 
life history data the numbers of organisms of a 
particular type that can be produced in a given 
interval of time he may fhd  it necessary to make 
assumptions which biologists in general would 
hesitate to accept. And even with these simplifying 
assumptions the computations may become so 
tedious as to make the labor involved seem un- 
justifiable in view of the seemingly academic 
interest of the result. In  particular, such computa- 
tions involve biological parameters which are not 
necessarily fixed characteristics of the species and 
which are not ordinarily expressible in convenient 
mathematical form. I t  is necessary to know the 
way in which the chance of dying (or of surviving) 
and the reproductive activities vary during the 
life span of an individual. These quantities are 
nicely summed up by the familiar life-table func- 
tion, survivorship (I,), which is defined as the 
probability of surviving from birth to some age x, 
and by the age-specific birth rate (b,), which is 
defined as the mean number of offspring produced 
during the interval of age from age x to age x + 1. 
The biologist immediately recognizes that these 
quantities vary with environmental conditions and 
that he cannot expect to obtain a realistic result if 
he must assume, for example, that the probability 
of surviving a day, a week, or a month, is the same 
for individuals born in the autumn as for those 
born in the spring. He also recognizes that the 
population consists of discrete units and that off- 
spring are produced in batches (here called litters 
whether in plants or animals) rather than continu- 
ously; hence he necessarily regards with suspicion 
any formulation of the problem in terms of differ- 
ential equations where these considerations are 
apparently ignored. 

Actually a tremendous variability is observed 
in life history phenomena which could affect the 
growth of populations. Some organisms are semel- 
parous, that is to say, they reproduce only once 

in a lifetime and in these semelparous forms 
reproduction may occur a t  the age of only 20 
minutes in certain bacteria (Molisch, 1938), of a 
few hours in many protozoa, or of a few weeks or 
months in many insects. Many semelparous plants 
and animals are annuals; in other semelparous 
organisms reproduction may occur only after a 
number of years of maturation, for example, two 
or more years in dobson flies and Pacific salmon, 
and many years in "century plants" (Agave) and 
the periodic cicada or "17-year locust" (Magicicada 
septe~zdecim). The number of potential off spring 
produced by semelparous individuals varies from 
two in the case of binary fission to the literally 
trillions (2 X lOI3) of spores produced by a large 
puffball (Calvatia gigantea). 

In  iteroparous forms, that is to say, those which 
reproduce more than once in a lifetime, the period 
of maturation preceding the first production of 
prospective offspring may vary from as little as a 
few days in small crustaceans to over a century in 
the giant sequoia (U. S. Forest Service, 1948), 
and practically any intermediate value may be 
encountered. After the first reproduction has oc- 
curred in iteroparous organisms it may be repeated 
a t  various intervals-for example, daily (as in some 
tapeworms), semiannually, annually, biennially, 
or irregularly (as in man). As in semelparous organ- 
isms, the litter size of iteroparous forms may also 
vary greatly; here it may vary from one (as is 
usual, for example, in man, whales, bovines, and 
horses) to many thousands (as in various fishes, 
tapeworms, or trees). The litter size may be con- 
stant in a species, vary about some average, or 
change systematically with the age of the parent, 
in which case it may increase to some maximum 
(as in tapeworms) or climb to a maximum and then 
decline as in some cladocerans (Banta et al., 
1939; Frank, 1952). Furthermore, individuals may 
live on after their reproduction has ceased com- 
pletely, and this post-reproductive period may 
amount to more than one-half of the normal life 
span (Allee et al., 1949, p. 285). 

There is similar variability in the potential 
longevity of individual organisms. Man, various 
turtles, and trees may survive more than a century, 
while, on the other hand, the life span of many 
other species is concluded in hours or days. In- 
numerable intermediate values of course occur. 

Additional sources of variation (such as biased 
sex ratios and the occurrence of asexual reproduc- 
tion in developmental stages so as to result in the 
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production of many offspring from one egg or 
spore) force the conclusion that the number of 
theoretical combinations of observed life history 
phenomena must greatly exceed the number of 
known species of organisms. And if all these phe- 
nomena have potential adaptive importance the 
interpretation of the possible merits of the particu- 
lar combination of features exhibited by a species 
presents a problem of apparent great complexity. 

The usual mathematical approach to the prob- 
lem of potential population growth is straight- 
forward. I t  is assumed that the growth of a 
population a t  any instant of time is proportional 
to the size of the population a t  that instant. If r 
is the factor of proportionality and P, represents 
the population size a t  any x time this leads to 
the differential equation 

which upon integration gives: 

where A is a constant. This is an equation of 
continuous compound interest a t  the rate r or of a 
geometric progression where the ratio between the 
sizes of the populations in two consecutive time 
intervals, say years, is er. 

While formulas (1) and (1') represent only the 
usual starting point for mathematical discussions 
of population growth, they already exhibit points 
about which there has been, and still is, a great 
deal of controversy. Explicit statements to the 
effect that human populations potentially increase 
by geometric progression can be traced back a t  
least to Capt. John Graunt (1662), who estimated 
that a human population tends to double itself 
every 64 years (which would correspond to r = 

,0108 in formula 1). This belief in geometric 
progression as the form of potential population 
increase was endorsed by numerous students prior 
to the great controversy initiated by Malthus in 
1798 (see review by Stangeland, 1904). Among 
these early writers we may here note only Lin- 
naeus (1743), who considered the problem of 
geometric increase in the progeny of an annual 
plant, and Benjamin Franklin (1751), who esti- 
mated that the population of "America" could 
double a t  least every 20 years (corresponding to 
r = .035), and who clearly regarded the geometric 
nature of potential population increase as a general 
organic phenomenon. 

The great controversy over growth in human 
populations which was initiated by the publication 
in 1798 of Malthus' Essay on Population engen-
dered numerous arguments regarding geometric 
progression as the potential form of population 
growth. This controversy is still alive and in much 
its original form, with the "Neo-Malthusian" 
position maintaining that potential population 
growth is indeed in the form of a geometric progres- 
sion, whereas the capacity of the environment to 
absorb population is necessarily limited, and with 
their opponents denying both the geometric 
progression and the finite capacity of the environ- 
ment. Essentially the modern arguments against 
the Malthusian thesis, although not presented in 
modem concise form, are to be found in the treatise 
by Sadler (1830) which, whatever its shortcomings 
from the modem point of view, contains in places 
(especially in the appendix to Book IV) a very 
remarkable pre-Darwinian statement of such 
ecological phenomena as food chains, species 
interactions, and the balance of numbers between 
predators and prey. 

The entire problem of potential population 
growth and its relationship to the resources of the 
environment is clearly one of the fundamental 
problems of ecology, but one which has never been 
adequately summarized in a way to reconcile the 
mathematical approaches, such as those of Lotka 
(1925), Volterra (1927), Kuczynski (1932, 1935), 
Kostitzin (1939), and Rhodes (1940), and the 
purely biological approaches which have concen- 
trated on life history features such as longevity, 
fecundity, fertility, and sex ratios. In the present 
paper we will consider the mathematical form of 
potential population growth and certain subsidiary 
phenomena and the way in which these are related 
to particular life history phenomena. It is hoped 
that this will bring to attention some of the possible 
adaptive values of observed life history phenomena 
and will lead ecologists to a greater consideration 
of population problems which are essentially 
ecological. Life history features do in fact control 
potential population growth, as Sadler recognized, 
but the quantitative relationships have still been 
so insufficiently elucidated that even today ecolo- 
gists generally do not attempt to answer queries 
such as the following, written by Sadler in 1830 
(Vol. 2, p. 318): 

"For instance, how would those who have the folly 
to suppose that population in this country advances 
too fast by one per cent., so operate, had they even 
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their wish, as to diminish the number of marriages by 
one in one hundred, or otherwise contract the fecundity 
of the existing number by about one twenty-fifth part 
of a birth each, or calculate, upon their own erroneous 
suppositions, the term of that postponement of mar-
riage on which they insist so much, so as to produce 
this exact effect? The very idea is, in each instance, 
absurd to the last degree." 

FUNDAMENTAL CONSIDERATIONS 

Sadler (1830) makes clear in numerous places 
his belief that ". . . the geometrical ratio of human 
increase is, nevertheless, in itself, an impossibility 
. . ." (Vol. 2, p. 68). However, when one examines 
his argument it is apparent that he is not actually 
opposing the principle that with fixed life history 
features populations would grow a t  compound 
interest, but rather is proposing the thesis that 
life history features change with population den- 
sity, e.g., his fundamental thesis: "The prolificness 
of human beings, otherwise similarly circum-
stanced, varies inversely as their numbers" (Vol. 2, 
p. 252). Some of Sadler's computations assuming 
fixed ages a t  marriage and fecundity rates, in fact, 
lead to geometric progressions. 

The modern conception of population growth 
regards the potential rate of increase as a more or 
less fixed species characteristic (cf. Chapman, 1935) 
governed by life history features; but it considers 
that this potential rate is ordinarily only partially 
realized, the "partial potential" characteristic of a 
particular situation being dependent on environ- 
mental conditions. Ecologists commonly associate 
this concept of "biotic potential" with the name 
of Chapman (1928,1935), but actually the concept 
of populations as systems balanced between a 
potential ability to grow and an "environmental 
resistance" dates back a t  least to the Belgian 
statistician Quetelet (1835), who considered (p. 
277) that potential population growth is a geo-
metric progression, while the resistance to popu- 
lation growth (by analogy with a body falling 
through a viscous medium) varies as the square 
of the rate of growth. Only three years later 
Quetelet's student and colleague Verhulst (1838) 
set forth the thoroughly modem concept that 
potential population growth is a geometric progres- 
sion corresponding to our formula (I1), and that 
the environmental resistance varies inversely with 
the unexploited opportunities for growth. By this 
conception, if K represents the capacity of the 
environment or the ultimate size which the popu- 
lation can attain, the resistance to population 
growth increases as K - P ,  the amount of space 

remaining to be occupied, decreases. As the simp- 
lest case Verhulst considered that the resistance is 
related in a linear manner to the remaining op- 
portunities for growth and thus derived the 
familiar logistic function as a representation of 
population growth (for discussion see Allee et al., 
1949). 

The modem mathematical formulation of popu- 
lation growth, as given, for example, by Rhodes 
(1940), proceeds by expressing the environmental 
resistance as some function of population size, 
f(P), and writing a differential equation of the type 

By employing different functions for f(P), any 
number of population growth laws may be derived 
and the mathematical connection between P and x 
determined, providing equation (2) can be inte- 
grated. Rhodes gives several examples of the 
procedure. 

Formula (I1), the equation of the geometric 
progression representing population growth in an 
unlimited environment, represents the special case 
of formula (2) where the factorf(P) is replaced by 
a constant, most conveniently by the constant 
value unity. By the foregoing interpretation it is 
clear that the constant r must be regarded as a 
quantity of fundamental ecological significance. 
I t  is to be interpreted as the rate of true com- 
pound interest a t  which a population would grow 
if nothing impeded its growth and if the age- 
specific birth and death rates were to remain 
constant. 

Quite recently a number of ecologists have 
recognized the importance of a knowledge of the 
value of r for non-human populations and have 
computed its value for various species by em-
ploying empirical values of age-specific birth rates 
and survivorship (Leslie and Ranson, 1940; 
Birch, 1948; Leslie and Park, 1949; Mendes, 1949; 
Evans and Smith, 1952). While Chapman's term 
"biotic potential" would seem to have ecological 
merit as the name for this parameter r it has been 
variously called by Lotka the "true," the "in-
cipient," the "inherent," and the "intrinsic" rate 
of increase, and by Fisher (1930) the "Malthusian 
parameter" of population increase. Probably for 
the sake of stabilizing nomenclature it is advisable 
to follow the majority of recent writers and refer 
to r as "the intrinsic rate of natural increase." 

In the works of Dublin and Lotka (1925), 
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Kuczynski (1932), and Rhodes (1940) on human 
populations and in the papers mentioned above 
dealing with other species, the value of r has 
typically been determined by some application of 
three fundamental equations developed by Lotka 
(1907a, b; Sharpe and Lotka, 1911). H e  showed 
that if the age-specific fecundity (b,) and survivor- 
ship (1,) remained constant, the population would 
in time assume a iixed or "stable" age distribution 
such that in any interval of age from x to x + dx 
there would be a fixed proportion (c,) of the popu- 
lation. Once this stable age distribution is estab- 
lished the population would grow exponentially 
according to our formula (1') and with a birth 
rate per head, P.  Then the following equations 
relate these quantities: 

and 

While the use of formulas (3), (4), and ( 5 )  to 
compute the value of r often presents practical 
difficulties owing to the difficulty of approximating 
the functions 1, and b, by a mathematical function, 
and also because the equations usually must be 
solved by iterative methods, it  may fairly be 
stated that Lotka's pioneer work establishing these 
relationships provided the methods for interpreting 
the relationships between life history features and 
their population consequences. 

However, the exceedingly important ecological 
questions of what potential advantages might be 
realized if a species were to alter its life history 
features have remained largely unexplored. 
Doubtless, as already noted, this is largely to be 
explained by a certain suspicion felt by biologists 
toward analyses such as those of Lotka, which 
seem to involve assumptions very remote from the 
realities of life histories as observed in the field 
and laboratories. Aparticularly pertinent statement 
of this point of view is that of Thompson (1931), 
who recognized the great practical need for meth- 
ods of computing the rate of increase of natural 
populations of insects adhering to particular life 
history patterns but who insisted that the repro- 
ductive process must be dealt with as a discon-
tinuous phenomenon rather than as a compound 

interest phenomenon such as that of formula (1'). . . 
His methods of computation were designed to give 
the exact number of individuals living in any 
particular time period and, while he recognized 
that the population growth can be expressed in an 
exponential form such as (If), he rejected its use 
on these grounds: 

"In the first place, the constant (r) cannot be deter- 
mined until the growth of the population under certain 
definite conditions has been studied during a con-
siderable period; in the second place, no intelligible 
significance can be attached to the constant after its 
value has been determined; in the third place, the 
growth of the population is considered in this formula 
to be at every moment proportional to the size of the 
population, which is not true except with large num- 
bers and over long periods and cannot be safely taken 
as a basis for the examination of experimental data." 

I n  the following sections of the present paper an 
effort will be made to reconcile these two divergent 
points of view and to show under what conditions 
Thompson's "discontinuous" approach and the 
continuous methods lead to identical results. 
Practical methods of computation can be founded 
on either scheme, and there are circumstances 
where one or the other offers distinct advantages. 
I t  is hoped that a theoretical approach to popu- 
lation phenomena proceeding from exact computa- 
tional methods will clarify the meaning of some 
of the approximations made in deriving equations 
such as (3), (4), and (5) by continuous methods, 
and will stimulate students of ecology to a greater 
interest in the population consequences of life 
history phenomena. 

Before proceeding to a discussion of potential 
population growth, one point which has sometimes 
caused confusion should be mentioned. This con- 
cerns the sex ratio and the relative proportions of 
different age classes in the growing population. 
Once stated, it is obvious that if a population is 
always growing, as are the populations in the 
models used for determining potential population 
growth, then each age and sex class must ulti- 
mately come to grow a t  exactly the same rate as 
every other class. If this were not the case the 
disproportion between any two classes would come 
to exceed all bounds; the fastest growing class 
would continue indefinitely to make up a larger 
and larger proportion of the total population. I t  
is thus intuitively recognizable that with fixed life 
history features there must ultimately be a fixed 
sex ratio and a stable age distribution. I n  dis- 
cussing potential population growth i t  is often 
convenient to confine our attention to females or 
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even to a restricted age class, such as the annual 
births, while recognizing that the ultimate growth 
rate for such a restricted population segment must 
be identical to the rate for the entire population. 

SIMPLEST CASES OF POPULATION GROWTH 

Non-overlapping generations 

The simplest possible cases of population growth 
from the mathematical point of view are those in 
which reproduction takes place once in a lifetime 
and the parent organisms disappear by the time 
the new generation comes on the scene, so that 
there is no overlapping of generations. This situ-
ation occurs in the many plants and animals which 
are annuals, in those bacteria, unicellular algae, 
and protozoa where reproduction takes place by 
fission of one individual to form two or more 
daughter individuals, and in certain other forms. 
Thus in the century plants (Agave) the plant dies 
upon producing seeds a t  an age of four years or 
more, the Pacific salmon (Oncorhynchus) dies after 
spawning, which occurs a t  an age of two to eight 
years (two years in the pink salmon 0. gorbuscha), 
and cicadas breed a t  the end of a long develop-
mental period which lasts from two years (Tibicm) 
to 17 years in Magicicada. For many other insects 
with prolonged developmental stages such as 
neuropterans and mayflies potential population 
growth may be considered on the assumption that 
generations do not overlap. 

In  these cases, perhaps most typically illustrated 
in the case of annuals, the population living in 
any year or other time interval is simply the 
number of births which occurred a t  the beginning 
of that interval. Starting with one individual which 
is replaced by b offspring each of which repeats the 
life history pattern of the parent, the population 
will grow in successive time intervals according to 
the series: 1, b, bZ,b3, b4, . . . bZ.Hence the number 
of "births," say B,, a t  the beginning of any time 
interval, T,, is simply bZ which is identical with 
the population, P,, in that interval of time. If the 
population starts from an initial number Po we 
have: 

which is obviously identical with the exponential 
formula (l'), Pz = Aerz, where the constant A is 
precisely Po,the initial population size, and r = 

In b; the intrinsic rate of increase is equal to the 
natural logarithm of the litter size. 

If litter size varies among the reproductive 
individuals, with each litter size being character-
istic of a fixed proportion of each generation, i t  is 
precisely correct to use the average litter size, say 
6,in the computations, so that we have r = In 5. 
Furthermore, if not all of the offspring are viable, 
but only some proportion, say 11, survive to repro-
duce, we shall have exactly r = In bL1.Thus. 
mortality and variations in litter size do not com-
plicate the interpretation of population growth in 
cases where the generations do not overlap. On 
the other hand, even in species which reproduce 
only once, if the generation length is not the same 
for all individuals, this will lead to overlapping 
generations, and the simple considerations which 
led to formula (6) will no longer apply. In  other 
words, we can use an average figure for the litter 
size b but not for the generation length x. It will 
be shown in the next section, however, that the 
more general formula (1') is still applicable. 

In these simplest cases the assumption of a 
geometric progression as the potential form of 
population growth is obviously correct, and nu-
merous authors have computed the fantastic num-
bers of offspring which could potentially result 
from such reproduction. For example, according 
to Thompson (1942), Linnaeus (17401) pointed 
out that if only two seeds of an annual plant grew 
to maturity per year, a single individual could 
give rise to a million offspring in 20 years. (In all 
editions available to the present writer this inter-
esting essay of Linnaeus' is dated 1743, and the 
number of offspring a t  the end of twenty years is 
stated by the curious and erroneous figure 91,296.) 
That is, Pzo= Z20 = e20ln2 = 1,048,576. Additional 
examples are given by Chapman (1935, p. 148). 

Formulas (1') or (6) may, of course, also be used 
in an inverse manner to obtain the rate of multipli-
cation when the rate of population growth is 
known. For the example given by Molisch (1938, 
p. 25), referring to diatoms reproducing by binary 
fission where the average population was observed 
to increase by a factor of 1.2 per day, we have 
1.2 = ez ln 2, where x is the number of generations 
per day. Solving for l/x, the length of a generation, 

In 2 .69315 
we obtain l /x = --- ---- -- 3.8 days.

In 1.2 .I8232 

Overlapping generations 

Interest in computing the number of offspring 
which would be produced by a species adhering to 
a constant reproductive schedule dates back at 
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least to Leonardo Pisano ( =Fibonacci) who, in the 
year 1202, attempted to reintroduce into Europe 
the study of algebra, which had been neglected 
since the fall of Rome. One of the problems in his 
Liber Abbaci (pp. 283-84 of the 1857 edition) 
concerns a man who placed a pair of rabbits in an 
enclosure in order to discover how many pairs of 
rabbits would be produced in a year. Assuming 
that each pair of rabbits produces another pair in 
the first month and then re~roduces once more, 
giving rise to a second pair of offspring in the 
second month, and assuming no mortality, 
Fibonacci showed that the number of pairs in each 
month would correspond to the series 

1, 2, 3, 5, 8, 13, 21, 34, 55, etc., 

where each number is the sum of the two preceding 
numbers. These "Fibonacci numbers" have a 
rather celebrated history in mathematics, biology, 
and art (Archibold, 1918; Thompson, 1942; Pierce, 
1951) but our present concern with them is merely 
as a very early attempt to compute potential 
population growth. 

Fibonacci derived his series simply by following 
through in words all of the population changes 
occurring from month to month. One with suffi- 
cient patience could, of course, apply the same 
procedure to more complicated cases and could 
introduce additional variables such as deductions 
for mortality. In fact, Sadler (1830, Book 111) did 
make such computations for human populations. 
He was interested in discovering a t  what ages 
persons would have to marry and how often they 
would have to reproduce to give some of the rates 
of population doubling which had been postulated 
by Malthus (1798). To accomplish this, Sadler 
apparently employed the amazingly tedious pro- 
cedure of constructing numerous tables corre-
sponding to different assumptions until he found 
one which approximated the desired rate of 
doubling. 

Although we must admire Sadler's diligence, 
anyone who undertakes such computations will 
find that i t  is not difficult to devise various ways 
of systematizing the procedure which will greatly 
reduce the labor of computation. By far the best 
of these methods known to the present writer is 
that of Thompson (1931), which was originally 
suggested to him by H. E. Soper. 

In  the Soper-Thompson approach a "generation 
law" (G) is written embodying the fixed life history 
features which it is desired to consider. The symbol 

Tz stands for the xth interval of time, and a gener- 
ation law such as G = 2T1 + 2T2 would be read 
as "two offspring produced in the first time interval 
and two offspring produced in the second time 
interval." This particular generation law might, 
for example, be roughly applicable to some bird 
such as a cliff swallow, where a female produces 
about four eggs per year. Concentrating our atten- 
tion on the female part of the population, we might 
wish to compute the rate of population growth 
which would result if each female had two female 
offspring upon attaining the age of one year and 
had two more female offspring a t  the age of two 
years. The fundamental feature of the Thompson 
method is the fact that the expression: 

is a generating function which gives the series of 
births occurring in successive time intervals. In  
the algebraic division the indices of the terms 
T1, TZ, etc., are treated as ordinary exponents and 
the number of births occurring in any time interval 
Tz is simply the coefficient of Tz in the expansion 
of expression (7). Thus, for our example where 
G = 2T1 f 2TZ we obtain: 

showing that one original female birth gives rise 
to 328 female offspring in the sixth year. The 
series could be continued indefinitely to obtain the 
number of births any number of years hence. 
However, in practice it is not necessary to con- 
tinue the division. In  the above series the coefficient 
of each term is simply twice the sum of the coeffi- 
cients of the two preceding terms; hence the gen- 
eration law gives us the rule for extending the 
series. G = 2T1 + 2TZ instructs us to obtain each 
new term of the series by taking twice the pre- 
ceding term plus twice the second term back. In 
the case of the Fibonacci numbers we would have 
G = T1 + T2, telling us a t  once that each new 
term is the sum of the two preceding it. 

From the birth series we can easily obtain the 
series enumerating the total population. If each 
individual lives for X years, the total population 
in Tz will be the sum of X consecutive terms in the 
expansion of the generating function. Multiplying 
formula (7) by the length of life expressed in the 
form 1 + TI + TZ + T3 + . . . + TX-1 will give 
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the population series. In our above example if we 
assume that each individual lives for three years, 
although, as before, it only reproduces in the first 
two, we obtain for the population 

a series which still obeys the rule G = 2Tl + 2 P .  
Thompson's method for obtaining the exact 

number of births and members of the population 
in successive time intervals is very general. As in 
the case of non-overlapping generations, the coeffi- 
cients in the generation law may refer to average 
values for the age-specific fecundity. Also the 
length of the time intervals upon which the 
computations are based can be made arbitrarily 
short, so that it is easy to take into account 
variations in the age a t  which reproduction occurs. 
For the above example, time could have been 
measured in six-month periods rather than years 
so that the generation law would become G = 

2TZ + 2T4, with the same results already obtained. 
Furthermore, the factor of mortality can easily 

be included in the computations. For example, 
suppose that we wish to determine the rate of 
population growth for a species where the females 
have two female offspring when they reach the 
age of one, two more when they reach the age of 
two, and two more when they reach the age of 
three. Neglecting mortality, this would give us the 
generation law G = 2Tl + 2TZ + 2T3. If we were 
further interested in the case where not all of the 
offspring survive for three years, the coefficients 
in the generation law need only be multiplied by 
the corresponding survivorship values. For ex-
ample, if one-half of the individuals die between 
the ages of one and two, and one half of the re- 
mainder die before reaching the age of three we 
would have 11 = 1, l2 = $5, la = >a, and the 
above generation law would be revised to G = 
2T1 + P + MT3. The future births per original 
individual would then be 

Very generally, if the first reproduction for a 
species occurs a t  some age a and the last repro- 
duction occurs a t  some age w, and letting b, and 
1, represent respectively the age-specific fecundity 

and survivorship, we may write the generation 
law as: 

Therefore, in the Thompson method we have a 
compact system of computation for obtaining the 
exact number of births and the exact population 
size a t  any future time, assuming that the signifi- 
cant life history features (a, w, l,, and b,) do not 
change. 

Not all of the possible applications of Thomp- 
son's method have been indicated above. For 
example, formula (7) may be used in an inverse 
manner so that it is theoretically possible to work 
back from a tabulation of births or population 
counts made in successive time intervals and dis- 
cover the underlying generation law. Formulas (7) 
and (8), together with the procedure of multiplying 
the birth series by the length of life expressed as a 
sum of Tz values, provide the nucleus of the system 
and offer the possibility of analyzing the potential 
population consequences of essentially any life- 
history phenomena. The system has the merit of 
treating the biological units and events as dis-
continuous variates, which, in fact, they almost 
always are. The members of populations are 
typically discrete units, and an event such as 
reproduction typically occurs a t  a point in time 
with no spreading out or overlapping between 
successive litters. While suwivorship, l,, as a 
population quantity, is most realistically regarded 
as continuously changing in time, the product l,bz 
which enters our computations by way of formula 
(8) is typically discontinuous because of the dis- 
continuous nature of b,. 

I t  is quitc obvious that equations of continuous 
variation such as (1') are often much more con- 
venient for purposes of computation than the 
series of values obtained by expanding (7). This is 
especially true in dealing with the life histories of 
species which have long reproductive lives. In  
writing a generation law for man by (8) we should 
have to take a a t  least as small as 15 years and w 
at  least as great as 40 years, since for the popula- 
tion as a whole reproduction occurs well outside of 
these extremes and it would certainly be unrealistic 
to regard b, as negligibly small anywhere between 
these limits. Thus there would be a t  least 25 terms 
in our generation law, and the computations would 
be extremely tedious. By selecting special cases 
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Time intervals 

FIG. 1. EXACTVALUES POPULATION INOF GROWTH 
TERMSOF BIRTIISPER UNIT TIME UNDER SEV-

ERAL GENERATION WHEN EACH FEUALELAWS, 
HAS A TOTALOF FOUR FEMALE OFFSPRING 

In each case it is assumed that a single female exists 
a t  time zero and produces her four progeny on or before 
her fourth birthday. The plotted points represent exact 
values as determined by Thompson's method. To the 
extent that the points for any generation law fall on a 
straight line in this logarithmic plot, they can be repre- 
sented by the exponential growth formula (l'),and the 
slope of each line is a measure of the intrinsic rate of 
natural increase (7). 

for study i t  is sometimes possible greatly to 
simplify the procedures. For example, if one is 
interested in the case where there is no mortality 
during the reproductive span of life and where the 
litter size is a constant, say b, the expression for 
the generation law (8) can be simplified to: 

Since one can also write the length of life as 

the generating function for the total population 

This last formula is much more convenient for 
computations than one containing 25 terms or so 
in the denominator, but it applies only to a very 
special case and is much less convenient than 
formula (1'). Consequently, great interest at-
taches to these questions: can (1') be used as a 
substitute for (7)? (i.e., does Thompson's method 
lead to a geometric progression?) and, if i t  is so 
used, can the constants, particularly r,  be inter- 
preted in terms of life-history features? 

Fig. 1 shows the exact values, as determined by 
Thompson's method, of the birth series arising 
from several generation laws (life-history patterns) 
which have in common the feature that in each 
case every female produces a total of four female 
offspring in her lifetime and completes her repro- 
ductive life by the age of four "years." The number 
of births is plotted on a logarithmic scale, hence 
if i t  can be represented by formula (I1), P = AerZ 
or, logarithmically, In P = In A + rx, the points 
should fall on a straight line with slope propor- 
tional to r. I t  is apparent from Fig. 1 that after 
the first few time intervals the points in each case 
are well represented by a straight line. Therefore, 
except in the very early stages, formula (I1) does 
give a good representation of potential population 
growth. The question remains, however, as to 
whether we can meet Thompson's objection to (1') 
and attach any intelligible significance to the con- 
stants of the formula. From Fig. 1 it  is obvious 
that the lines do not, if projected back to time 0, 
indicate exactly the single individual with which 
we started. Thus, in these cases the constant A 
cannot be precisely Po as was the case with non- 
overlapping generations. 

Before proceeding to interpret the constants of 
formula (1') for the case of overlapping genera- 
tions i t  will be well to notice one feature of Fig. 1 
which is of biological interest. I n  the literature of 
natural history one frequently encounters refer- 
ences to the number of offspring which a female 
can produce per lifetime, with the implication 
that this is a significant life-history feature. The 
same implication is common in the literature 
dealing with various aspects of human biology, 
where great emphasis is placed on the analysis of 
total family size. From Fig. 1 it  will be seen that 
this datum may be less significant from the stand- 
point of contributions to future population than 
is the age schedule upon which these offspring are 
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produced. Each life history shown in Fig. 1 repre- 
sents a total production of four offspring within 
four years of birth, but the resulting rates of 
potential population growth are very different 
for the different schedules. I t  is clear that the cases 
of most rapid population growth are associated 
with a greater concentration of reproduction into 
the early life of the mother. This is intuitively 
reasonable because we are here dealing with a 
compound interest phenomenon and should expect 
greater yield in cases where "interest" begins to 
accumulate early. However, the writer feels that 
this phenomenon is too frequently overlooked in 
biological studies, possibly because of the diffi- 
culty of interpreting the phenomenon quanti-
tatively. 

In  seeking to reconcile the continuous and dis- 
continuous approaches to potential population 
growth, let us first note that Thompson's discon- 
tinuous method corresponds to an equation of 
finite differences. We have seen above that the 
generation law gives us a rule for indefinitely 
extending the series representing the population 
size or the number of births in successive time 
intervals by adding together some of the preceding 
terms multiplied by appropriate constants. If we 
let f(,) represent the coefficient of Tz in the ex-
pansion of the generating function (7) and, for 
brevity, write in (8) V, = lzbz, then our popu- 
lation series obeys the rule: 

which may be written in the alternative form, 

f - vaf (z+-a) - va+lf (z+-a-1) - ' ' . 
- Vwf(z), = 0. (10) 

Thus for our "cliff swallow" example, where we had 
G =  2Tl + 2T2 we have 

f(,) = 2f(,l) + 2f(-2) or, 
f(z+2) - 2f(Z+l) - 2f(z) = 0. 

Formula (10) represents the simplest and best 
understood type of difference equation, a homo-
geneous linear difference equation with constant 
coefficients. I t  is outside the scope of the present 
paper to discuss the theory of such equations, 
which has been given, for example, by Jordan 
(1950). By the nature of our problem as sum-
marized in formula (9), all of our V, values are 
either equal to zero or are positive real numbers 
and all of the signs of the coefficients in (9) are 
positive: features which considerably simplify 

generalizations. By virtue of these facts it can be 
shown that there is always a LLcharacteristic" 
algebraic equation corresponding to (10). This is 
obtained by writing pZ forf(,) and dividing through 
by the p value of smallest index. This gives 

an algebraic equation which has the roots pl, 
~ 2 ,etc. 

The general solution of the corresponding differ- 
ence equation (10) is 

where the C's are constants to be determined by 
the initial conditions of the problem. Formula (12) 
is precisely equivalent to Thompson's method and 
is a general expression for the number of births or 
the population size in any future time interval. 

As an example we may consider the case where 
G = 2T1 + 2 P .  The difference equation, as al- 
ready noted, is f(,+z) - 2f(ut~)- 2f(,) = 0 and 
the characteristic algebraic equation is p2 - 2p -
2 = 0 which is a quadratic equation with the roots 
p1 = 1 + 4,and p2 = 1 -4.Hence the general 
solution is f(,) = Cl(1 + 4 ) + C2(1- TO~ 4 ) ~ .  
determine the constants Cl and Cz we look a t  the 
beginning a of the seriesnd note that we have 
f(o) = 1 and f(l) = 2. Substituting these values in 

d + lthe general solution we obtain C1 = ---- and 
2 4 

4 - 1  
Cz = ----. Therefore, the general expression 

2 4 
for the number of births in time interval Tz is 

f (2) = ys + GIZ 

4 3 - 1+ -------(I - 4 )  " 
2 4  

p1231 - 231 
which can be simplified to f(,) = -

4: -
P? + pFp2 + . . . + P;. 

In  order to have the difference equation (12) 
correspond to the equation of exponential growth 
(l'), the ratio between populations in successive 
time intervals must assume a constant value giving 

f (Z+1) - er. (13) 
f(Z) 

By the nature of our problem, as already noted, the 
potential population growth is always positive, so 
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in the single positive root of (11) for the purpose 
that any limit approached by the ratio must '*)

f(*) 
of determining the constant r, and this can readily 

be a positive real number. 
I t  is beyond the scope of the present paper to 

discuss the conditions, for difference equations in 
general, under which this ratio does approach as a 
limit the largest real root of the characteristic 
algebraic equation. (See, for example, Milne-
Thompson, 1933, chap. 17). Dunkel (1925) refers 
to the homogeneous equation with real constant 
coefficients corresponding to our formulas (10) 
and (11). The algebraic equation (11) has a single 
positive root which cannot be exceeded in absolute 
value by any other root, real or complex. Using (12) 
to express the ratio between successive terms, 
we have 

f(Z+l)- Cl P?+' + Cz pt+' + .' . + Cn P:+'- - . (14)
f(z) Clp? + CZP;+ "' + CnpZn 

If we let pl represent the root of (11) of greatest 
absolute value and divide both numerator and 
denominator of (14) by ClplZ we obtain 

The expressions in parentheses are all less than 
unity, on the assumption that pl is the largest 
root, and the entire expression in brackets ap- 
proaches unity as x increases. Consequently we 
have, for x large 

This then explains the shape of the potential 
birth and population series as illustrated in Fig. 1. 
I n  the very early stages population growth is 
irregular, because the expressions in (12) and (15) 
involving the negative and complex roots of (11) 
are still large enough to exert an appreciable influ- 
ence. As x increases, the influence of these other 
roots becomes negligible and the population grows 
exponentially, conforming to (16). In  considering 
potential population growth we are concerned with 
the ultimate influence of life-history features, and 
the equation of geometric progression or compound 
interest does actually represent the form of po- 
tential population growth. We are interested only 

be computed with any desired degree of precision 
by elementary algebraic methods. 

Having established the relationship of formula 
(13) or (16), it is easy to reconcile Thompson's 
discontinuous approach to population growth with 
Lotka's continuous approach, as exemplified by 
formulas (3), (4), and (5). 

Employing formula (9) we may write the ratio 
between populations in successive time intervals as 

Substituting the relationship given by (13), this 
becomes 

= vae-~(-l)+ + . . . + ~ ~ ~ - r ( w - ~ ) ,or 

1 = Vae-'a + b'Q+le-'("+l) + . . . + Vwe-". 

Replacing V, by its equivalent, l,b,, this is 

Formula (17) is the precise equivalent in terms of 
finite time intervals of Lotka's equation (3) for 
infinitesimal time intervals. In  Lotka's equation, 
as in (17), the limits of integration in practice are 
a! and w since b, is zero outside of these limits. 
Formula (17) was in fact employed by Birch (1948) 
as an approximation to (3) in his method of de- 
termining r for an insect population. The only 
approximation involved in our derivation of (17) 
is the excellent one expressed by formula (13); 
otherwise the formula corresponds to Thompson's 
exact computational methods. It is hoped that 
recognition of this fact will make some of the 
approaches of population mathematics appear 
more realistic from the biological point of view. 

Formulas (4) and (5), originally due to Lotka, 
are also immediately derivable from the relation- 
ship (13). In  any time interval, T,, we may say 
that the population members aged 0 to 1 are 



115 POPULATION CONSEQUENCES OF LIFE HISTORY PHENOMENA 

simply the births in that interval, say B,. The 
population members aged 1 to 2 are the survivors 
of the births in the previous interval, that is 
ZIB,~, or employing (13), hB,e-'. Quite generally, 
the population members aged between z and z + 1 
are the survivors from the birth z intervals previ- 
ous, or I,B,e-'". If X is the extreme length of life 
for any population members (I,,, = 0) we have 
for the total population 

+ lXe+ = B, e-', I.. 
2-0 

The birth rate per individual, P,  is BJP,, there-
fore, 

X 

1/P = e-', I, (18)
0 

which is the equivalent in finite time intervals of 
Lotka's equation (4). Also the proportion, c,, of 
the population in the age range z to z + 1 is 
l.B,e-rz 

which is simply, 

P, 


COhQ'UTATIONAL METHODS 

In  the following sections we will examine some 
of the population effects which are the conse-
quences of particular life history patterns. Prob- 
ably the most significant comparisons are those 
involving the effects of life-history features on the 
intrinsic rate of natural increase, r. Of course, any 
change in r is accompanied by other effects, such 
as those on the age-structure and on the population 
birth-rate. However, the intrinsic rate of increase 
is a parameter of fundamental ecological impor- 
tance. If a species is exposed to conditions which 
would favor the ability to outbreed competitors or 
where exceptional hazards limit the probability 
that an individual will become established, we 
might expect to find life-history adjustments 
tending to increase the value of r. Conversely, if a 
species has evolved life-history features of a type 
tending to hold down the intrinsic rate of increase, 
a fertile field of inquiry may be opened regarding 
the selective factors to which such a species is 
subject. 

I t  is probably fairly obvious to anyone that in 
general a species might increase its biotic potential 
by increasing the number of offspring produced a t  
a time (litter size), by reducing mortality a t  least 

until the end of active reproductive life, by repro- 
ducing oftener, by beginning reproduction a t  an 
earlier age, or by minimizing any wastage of en-
vironmental resources on sterile members of the 
population. Any biologist will a t  once recognize, 
however, that a great deal of evolution (an extreme 
case is the evolution of sterility in the social in- 
sects) has proceeded in precisely the wrong direc- 
tion to increase biotic potential by some of these 
devices. Presumably, this can only mean that the 
optimum biotic potential is not always, or even 
commonly, the maximum that could conceivably 
be achieved by selecting for this ability alone. 
Comparative life-history studies appear to the 
writer to be fully as meaningful in evolutionary 
terms as are studies of comparative morphology or 
comparative physiology. 

Although a great many empirical data on life 
histories have been accumulated, attempts to 
interpret these data comparatively have lagged 
far behind the corresponding efforts in morphology 
and physiology. The methods exhibited in the 
preceding parts of the present paper are adaptable 
for the quantitative interpretation of life history 
features and, while the number of conceivable life- 
history patterns is infinite, we propose to examine 
some of the cases which appear to possess particu- 
lar ecological interest. 

The life-history features with which we are 
concerned are the age a t  which reproduction begins 
(a),the litter size and frequency of reproduction 
(both summarized by a knowledge of the function 
b,, which can also be computed so as to take 
account of the sex ratio), the maximum age a t  
which reproduction occurs (a),survivorship (I,), 
and maximum longevity (A). Corresponding to any 
given set of values for these quantities there is a 
definite value for the intrinsic rate of natural in- 
crease (r) and a definite stable age distribution of 
the population (c,). In  general, these population 
features will be altered by any alteration of the 
life-history features and we wish to examine some 
of these possible changes quantitatively. 

The most efficient way of making the desired 
computations will vary from problem to problem. 
Thompson's method (formulas (7) and (8)), could 
be used to obtain exact population values arising 
from any life history, but the computations would 
in many cases be exceedingly laborious and would 
actually uield no more information about the 
ultimate course of population growth than would 
be obtained by solving (11) for the positive root. 
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In either case it will usually be most efficient to 
measure time in terms of the shortest interval be- 
tween the pertinent life-history events with which 
we are concerned. 

Except in very special cases, it is necessary to 
use iterative methods for obtaining the value of r 
corresponding to particular life-history patterns. 
In most cases the solutions are quite rapidly ob- 
tained by employing a calculating machine and 
detailed tables of natural logarithms (e.g., Lowan, 
1941) or of the exponential function (e.g., New- 
man, 1883). In the majority of the cases considered 
by the writer, the most efficient procedure has been 
to rewrite formula (17) in the form: 

and then to obtain the sum of the series on the 
right-hand side of (19) for different patterns of 
variation in the function I,b, = V,. This method 
corresponds exactly to the discontinuous approach, 
granting only that potential population growth is a 
geometric progression, and it leads to relatively 
simple equations in a number of the cases of great- 
est ecological interest. 

A more general approach from the standpoint 
of formal mathematics can be obtained by re-
writing (3) in the form of a Stieltjes integral 
(Widder, 1940). We may define a maternity func- 
tion M(x) representing the average number of 
offspring which an individual will have pro-
duced by the time it has attained any age s, 
and such that its derivative with respect to time is 

( V ,  $A4(s) = V,). We then have 

which can represent cases where V(,) is either con- 
tinuous or discontinuous because the integral 
vanishes for values where V ,  is discontinuous. 
When V ,  can be expressed as a function of time 
(x),formula (20) is identical with (3) and the use 
of the Laplace transformation, a procedure of 
considerable importance in engineering and physi- 
cal mathematics, makes it possible to avoid the 
numerical integration and express V ,  as a function 
of r .  If V ,  is considered as a series of single im- 
pulses regularly spaced from a tow, equation (20) 
assumes the form (17). Laplace transformations 
for a number of functions are tabulated by Church- 
ill (1944) and Widder (1947) and, no doubt, there 

are cases where this procedure would lead to 
simpler iterative solutions than those obtained 
from equation (19). For the cases considered in the 
present paper, however, the solution of equation 
(19) generally leads to somewhat simpler results. 

In dealing with any particular life-history pat- 
tern the computational method of choice may de- 
pend upon the types of features to be investigated. 
The pure numbers a ,  w, and X typically offer no 
particular computational problems, as they are 
assigned different values, but this is not always the 
case with the functions b, and I,. 

In the cases considered by the writer the inter- 
vals between successive periods of reproduction 
have been considered to be equal. There is no 
particular difficulty in altering this assumption so 
as to consider cases where the frequency of repro- 
duction varies with age, but regular spacing seems 
to be so much more usual in nature as well as 
representing a limiting case that it seems to merit 
first consideration. Litter size often does vary with 
the age of the parent organism, and this fact may 
introduce complexities into the behavior of the 
function V,. In  this case also, it appears that the 
ecologically most interesting cases are those in 
which the average litter size is a constant. Further- 
more, as will become apparent in later sections, the 
first few litters produced by an organism so domi- 
nate its contribution to future population growth 
that later changes in litter size would have only 
very minor population consequences. In dealing 
with empirical data on human populations at-
tempts have been made to express analytically the 
changes in b, with age [cf. "Tait's law" that 
fertility declines in a linear manner (Yule, 1906; 
Lotka, 1927)l but for the present we shall consider 
that b, assumes only the values zero and some 
constant, b. 

The shape of the survivorship (I,) curve is more 
difficult to deal with in a realistic manner. Pearl 
and Miner (1935) originated the classification of 
survivorship curves which is most employed for 
ecological purposes (cf. Deevey, 1947; Allee et al., 
1949). The "physiological" survivorship curve is 
the limiting type in which each individual lives to 
some limit characteristic of the species and the 
age a t  death (A) is regarded as a constant. In  this 
case I ,  = 1 when x < X and I ,  = 0 when x > A. 
This is the simplest case for computations, and 
actual cases are known which approach this type. 
Furthermore, there are other types of survivorship 
curves of ecological interest which may be treated 
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in the same manner. In  what Deevey (1947) calls 
Type I11there is an extremely heavy early mortal- 
ity with the few survivors tending to live out a 
"normal life span." For the computation of r we 
are only concerned (cf. formula 19) with survivor- 
ship during the reproductive span of life, and it 
appears likely that "Type 111" curves can be 
treated as constant throughout this age range 
without serious error. Another interesting type of 
survivorship curve which appears to be consistent 
with empirical data a t  least on some wild popu- 
lations (cf. Jackson, 1939; Deevey, 1947; Ricker, 
1948) is that in which a constant proportion of the 
population dies in each interval of age. This, of 
course, implies that life expectancy is independent 
of age, an assumption which cannot in general be 
considered realistic but which might apply to 
catastrophic causes of mortality. When this type 
of I ,  curve applies, the V ,  values will be in geo- 
metric progression and the right side of formula 
(19) can be summed as easily as in the case where 
V ,  is constant. This case is, therefore, easily 
dealt with. 

The type of survivorship curve usually observed 
in actual cases is a reverse sigmoid curve, inter- 
preted by Deevey as intermediate between the 
"physiologicalJ' type and the geometric progres- 
sion. This can be interpreted in various ways as a 
"wearing-out" curve. Gompertz (1825) attempted 
to iind an analytical form on the assumption that 
the ability of individuals to "resist destruction" 
decreases as a geometric progression with age. 
Elston (1923) has reviewed formulas proposed to 
represent human mortality; none of these has 
proved generally applicable, despite great com-
plexity in some cases. Another approach is to 
assume that some sort of a "vital momentumJ' 
(Pearl, 1946) or ability to survive is distributed 
among the members of the population in the form 
of a bell-shaped or "normal" frequency distribu- 
tion. This point of view is a familiar and contro- 
versial one in the recent literature on bio-assay 
problems (Finney, 1947, 1949; Berkson, 1944, 
1951) and, a t  least to the extent that a bell-shaped 
curve can represent the empirical distribution of 
ages a t  death, a probit function or a logit function 
(Berkson, 1944) can be used to represent I,. 

In  the present paper we are concerned primarily 
with the limiting cases or the potential meaning of 
life-history phenomena. Consequently the writer 
has chosen to deal with survivorship curves of the 
physiological type and thus to investigate the 

ultimate effects of life-history phenomena for a 
species which is able to reduce mortality during 
the reproductive part of the life span to a negligible 
value. Our general conclusions will not be seri- 
ously altered even by rather startling drastic 
alterations of this assumption, and, in any case, 
our results will indicate the maximum gain which a 
species might realize by altering its life-history 
features. 

Perhaps the most fundamental type of life-
history pattern to be investigated in terms of 
population consequences is that in which the indi- 
viduals are assumed to produce their first offspring 
a t  the age of a "years" with the mean litter size 
being a constant, b. A second litter is produced 
a t  age a + 1 and an additional litter in each subse- 
quent interval of age out to, and including, age w. 
The total number of litters produced per individual 
i s t henn  = w - a  + 1. 

We then have, from (19), 

The expression in parentheses is a geometric 
1 - e-rn 

progression the sum of which is ---. Con-
1 - e' 

sequently, the general implicit equation for r under 
these conditions may be written 

which may be solved by trial and error by em- 
ploying a table of the descending exponential 
function. 

Alternative formulas corresponding to (2 1) may 
be obtained by the use of the Laplace transforma- 
tion. In  the case where reproduction is considered 
to occur as a series of regularly spaced impulses, 
this approach leads to formula (21). Another ap- 
proach is to consider that V ,  = 0 when x < cr, 
V ,  = b when a 5 x $ w, and V ,  = 0 when 
x > w. The Laplace transformation of a step-
function is then employed, leading to the formula 

Formula (22) and formula (21) would be identical 
under the condition that r + e-' = 1, which is 
approximately true when r is small. If one desires 
more nearly to reconcile the continuous and dis- 
continuous approaches in this case, he may note 
that in formula (21) he is finding the area under a 
"staircase-shaped" curve with the first vertical 
step located a t  x = a, whereas in formula (22) he 
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is finding the area under a straight line paralleling 
the slope of the staircase. I t  is apparent that the 
two areas will be more nearly identical if the 
straight line is started about one-half unit of time 
earlier. If we substitute in (22) a - 35 for a and 
w - W for w we obtain a formula which gives 
results for practical purposes identical with those 
obtained from (21). The formulas are about equally 
laborious to solve, and the writer has employed 
(21) for the following computations because of its 
more obvious relationship to the exact computa- 
tional methods. 

POSSIBLE VALUES OF REPEATED REPRODCCTION 

(ITEROPARITY) 

One of the most significant of the possible classi- 
fications of life histories rests on the distinction 
between species which reproduce only once in a 
lifetime and those in which the individuals repro- 
duce repeatedly. This being the case, i t  is very 
surprising that there seem to be no general terms 
to describe these two conditions. The writer pro- 
poses to employ the term semelparity to describe 
the condition of multiplying only once in a life-
time, whether such multiplication involves fission, 
sporulation, or the production of eggs, seeds, or 
live young. Thus nearly all annual plants and ani- 
mals, as well as many protozoa, bacteria, insects, 
and some perennial forms such as century plants 
and the Pacific salmon, are semelparous species. 
The contrasting condition will be referred to as 
iteroparity. Iteroparous species include some, such 
as small rodents, where only two or three litters 
of young are produced in a lifetime, and also 
various trees and tapeworms where a single indi- 
vidual may produce thousands of litters. The 
distinction between annual and perennial plants is 
doubtless the most familiar dichotomy separating 
semelparous and iteroparous species, but general 
consideration of the possible importance of these 
two distinct reproductive habits illustrates some 
points of ecological and evolutionary interest. For 
purposes of illustration we shall first consider cases 
where the time interval between reproductive 
efforts is fixed a t  one year. 

Many plants and animals are annuals. This is 
true, for example, of many of the higher fungi and 
seed plants, of insects, and even of a few verte- 
brates. One feels intuitively that natural selection 
should favor the perennial reproductive habit be- 
cause an individual producing seeds or young 
annually over a period of several years obviously 

has the potential ability to produce many more 
offspring then is the case when reproduction occurs 
but once. I t  is, therefore, a matter of some interest 
to examine the effect of iteroparity on the intrinsic 
rate of natural increase in order to see if we can 
find an explanation for the fact that repeated 
reproduction is not more general. 

Let us consider first the case of an annual plant 
(or animal) maturing in a single summer and dying 
in the fall a t  the time of reproduction. We have 
seen earlier (formula 16, seq.) that if b is the num- 
ber of offspring produced by such an annual the 
intrinsic rate of increase would be the natural 
logarithm of b. We wish to determine by how 
much this would be increased if the individual were 
to survive for some additional years, producing b 
offspring each year. Obviously, an annual species 
with a litter size of one (or an average of one 
female per litter in sexual species) would merely be 
replacing current population and no growth would 
be possible (In 1 = 0); therefore, when the litter 
size is one the species must necessarily be iter- 
oparous. 

The most extreme case of iteroparity, and the 
one exhibiting the absolute maximum gain which 
could be achieved by this means, would be the 
biologically unattainable case of a species with 
each individual producing b offspring each year for 
all eternity and with no mortality. In  this case we 
have a = 1 "year" and, since w is indefinitely 
large, the final term be-'(&') in equation (21) 
becomes zero. Thus we have 

which is to be contrasted with r = ln(b) for the 
case of an annual. Fm a n  annual species, the abso- 
lute gain in intrinsic population growth which could 
be achieved by changing to tke perennial reproductive 
habit would be exactly equivalent to adding m e  
individual to the average litter she.  Of course, this 
gain might be appreciable for a species unable to 
increase its average litter size. The extreme gain 
from iteroparity for a species with a litter size of 
two would be (In 3/ln 2) or an increase of about 
58 per cent, for a species with a litter size of four 
the increase would be about 16 per cent, but for 
one producing 30 offspring in a single reproductive 
period the extreme gain would amount to less 
than one per cent. I t  seems probable that a change 
in life history which would add one to the litter 
size would be more likely to occur than a change 
permitting repeated reproduction, which in many 
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cases would necessitate adjustments to survive 
several seasons of dormancy. I t  appears that for the 
usual annual plants and insects with their relatively 
high fecundity any selective pressure for perennial 
reproduction as a means of increasing biotic po- 
tential must be negligible. 

The above conclusion, which appears surprising 
when first encountered, arouses curiosity as to 
why iteroparity exists a t  all. Perhaps some species 
are physiologically unable to increase their fecun- 
dity. This must, however, be unusual and we are 
led to investigate whether the situation would be 
different for a species with a prolonged period of 
development preceding reproduction. One thinks 
immediately of the giant Sequoias which require a 
century to mature and begin reproduction but 
which, once started, produce large numbers of 
seeds biennially for centuries. 

In  order to investigate this question we may 
again compare the intrinsic rate of increase for a 
single reproduction with that corresponding to an 
infinite number of reproductions. This procedure 
will, of course, tend to overestimate the possible 
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gain from iteroparity although it will set an upper 
limit, and the first few reproductive periods so 
dominate the situation that even for very modest 
litter sizes there is a negligible difference between 
the results of a very limited number of reproduc- 
tive periods and an infinite number. 

For a not necessarily equal to one, formula (21) 
gives 

an implicit equation for r which must be solved by 
iterative means. 

Fig. 2 was constructed from formula (24) to 
show the relationship between the age a t  which 
reproduction begins (a) and the litter size (b) in 
terms of the possible gain in intrinsic rate of in- 
crease which could be achieved by iteroparity. The 
ordinates represent the proportionate increase in 
the value of r which could be achieved by changing 
from a single reproductive effort a t  age a to an 
infinite number a t  ages a, a + 1, a + 2, etc. 
The curves all slope upward, indicating that species 
with long pre-reproductive periods could gain more 

7first 8 1 19 0reproduction (a) 1 

FIG.2. THEEFFECTSOF LITTERSIZE (b)  AND AGEAT MATURITY ATTAINABLE(a)ON THE GAINS BY 
REPEATEDREPRODUCTION 

The litter size, b, is the number of female offspring per litter in the case of sexual species. 
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from iteroparity than forms which mature more 
rapidly. The tendency of the curves to flatten out 
with large values of a, however, indicates that the 
advantages of repeated reproduction increase 
somewhat less rapidly as the pre-reproductive 
period is prolonged. 

The relationship of iteroparity to litter size is 
clearly illustrated by Fig. 2. When the litter size 
is small, as shown by the curve for b = 2 (which 
would correspond to a litter of four individuals 
when the sex ratio is 1:1), iteroparity can yield 
important gains in biotic potential, and the possible 
gains are greater the longer maturity is delayed. 
The possible advantages diminish quite rapidly as 
litter size is increased, although it is clear that 
iteroparity as contrasted with a single reproductive 
effort would always add something to biotic 
potential. 

Fig. 2 suggests that for semelparous species with 
large litters there would be very slight selective 
pressure in favor of adopting the iteroparous habit, 
and that for iteroparous species with large litters 
there would be little selection against loss of the 
iteroparous habit, especially in forms which mature 
rapidly. On the other hand, in a species which is 
established as iteroparous there would be slight 
selection for increasing fecundity or if litter size is 
relatively large, even against loss of fecundity. 
This perhaps explains the notoriously low level of 
viability among the seeds of many trees. 

From these considerations it is obvious that 
when a species could benefit by an increase in the 
intrinsic rate of natural increase, this advantage 
might be achieved either by increasing fecundity 
in a single reproductive period or by adopting the 
iteroparous habit. A selective advantage would 
accrue to a mutation altering the life history in 
either of these directions, and it is an interesting 
field for speculation as to which type of mutation 
might be most likely to occur. In this connection 
it may be interesting to determine the amount of 
increase in litter size which, for a semelparous 
species, would be equivalent to retaining the initial 
litter size but becoming iteroparous. 

From (6) we have seen that the intrinsic rate of 
increase for a semelparous species is defined by 
era = b. We wish to find an equivalence factor (E) 
which will indicate by how much b must be in- 
creased to make the value of r for a semelparous 
species equal to that in formula (21) referring to an 
iteroparous species. By neglecting the last term 
in (21) so as to consider the most extreme case of 

iteroparity and substituting Eb = era, we obtain 

where the value of r must be obtained by solving 
equation (21). When E is plotted against a for 
various values of b, as shown in Fig. 3, the resulting 
curves are essentially straight lines. 

Fig. 3 illustrates some interesting points bearing 
on the life histories of organisms, such as tape-
worms and many trees, which are iteroparous in 
addition to producing large litters. From the ar- 
rangement of Fig. 2 one might suspect that the 
iteroparous habit would provide very little advan- 
tage to a species that could produce a thousand or 
so offspring in a single litter, but Fig. 3 indicates 
that the selective value of iteroparity may be 
greatly increased when the pre-reproductive part 
of the life span is prolonged. 

A mature tapeworm may produce daily a num- 
ber of eggs on the order of 100,000 and may con- 
tinue this for years (Allee et al., 1949, p. 272; 
Hyman, 1951). With so large a litter size one 
wonders if iteroparity in this case may not repre- 
sent something other than an adaptation for 
increasing biotic potential. Perhaps the probability 
that a tapeworm egg (or a Sequoia seed) will be- 
come established may be increased by distributing 
the eggs more widely in time and space, and this 
could conceivably be the reason for the iteroparous 
habit. No dehi te  answer to this problem is pos- 
sible a t  present, but Fig. 3 indicates that a knowl- 
edge of the length of the life cycle from egg to egg 
is an essential datum for considering the question. 
In a t  least some tapeworms a larva may grow into 
a mature worm and reproduce a t  an age of 30 days 
(Wardle and McLeod, 1952). If this represented 
the length of the entire life cycle, then Fig. 3 
indicates, assuming b = 100,000, that a threefold 
increase in litter size would be the equivalent of 
indefinite iteroparity. However, with the larval 
stage in a separate host, the average life cycle must 
be much longer. If the total cycle requires as much 
as 100 days, Fig. 3 shows that it would require 
almost an eight-fold increase in litter size (a single 
reproductive effort producing 790,167 offspring) to 
yield the same biotic potential as iteroparity with 
a litter size of 100,000. Obviously, it is possible, 
when the life cycle is sufficiently prolonged, to 
reach a point where any attainable increase in 
litter size would be less advantageous for potential 
population growth than a change to the iteroparous 
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Age at first reproduction(a) 
FIG.3. THECHANGES TO ACHIEVE REPRODUCTIONIN LITTER SIZE WHICH WOULD BE REQUIRED IN A SINGLE 

THE SAMEINTRINSIC THAT WOULD RESULT ITEROPARITYRATEOF INCREASE FROM INDEFINITE 
b represents the litter size for an iteroparous species and the ordinate scale (E) represents the factor by which 

b would have to be multiplied to attain the same intrinsic rate of increase when each female produces only one 
litter in her lifetime. 

habit. Hence a selective pressure can operate in 
favor of iteroparity even when the litter size is 
large. I t  is clear from Fig. 3, noting the greater 
slope of the lines representing smaller litter sizes, 
that in these cases the point will be reached more 
quickly a t  which the potential gains from itero- 
parity outweigh those attainable by increasing the . . 

litter size. 
Man has a life cycle which is rather unusual in 

that it  combines a long pre-reproductive period 
with a very small litter size; the very conditions 
mder  which iteroparity should be most advanta- 
geous. Everyone is, of course, aware that multiple 
births occur in man but with such a low frequency 
in the population that they are of negligible im- 
portance in population phenomena. It is also rather 
generally accepted that there is a hereditary basis 
for the production of multiple births. The question 

arises as to why increased litter size should not be- 
come more common simply as a result of increased 
contributions to subsequent population resulting 
from the increase in biotic potential associated with 
large litters. I t  should be of interest, therefore, to 
determine how large a litter would have to be 
produced in a single reproductive effort to provide 
an intrinsic rate of increase equal to that resulting 
from three or more single births. 

I n  the case of man we may rather confidently 
accept the value b = 36 to signify that the average 
number of female offspring produced per human 
birth, and which will ultimately mature, is one- 
half. Accepting this value means that a mother 
must on the average produce two "litters" merely 
to replace herself (to give r = 0), so we shall 
examine the intrinsic rate of increase only for 
cases where n,the total number of births, is greater 
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than two. To examine the maximum gain attain- 
able by iteroparity we assume that successive 
births are spaced one year apart and obtain the 
value of r from formula (21), employing different 
values of n and a. I t  is easily seen that the neces- 
sary litter size, say b', to give the same value of r 
by means of a single reproductive effort a t  age a, 
would be precisely era. 

The value of r from formula (21) corresponding 
to three annual births beginning a t  age 12 is .0312. 
At the other extreme, if the first of the three 
births occurs a t  age 30 we obtain r = .0131. The 
corresponding values of era = b' are successively 
1.41 and 1.48. Under these conditions i t  would re- 
quire essentially a three-fold increase in litter size to 
achieve in one re9roductive e j w t  the same biotic 
potential as  that obtained from three successive births. 
The same conclusion is obtained when we consider 
larger numbers of births. In  the case of man very 
little could be gained by increasing the litter size 
by any reasonable amount and i t  is probable that 
the biological risk involved in producing multiple 

births is more than sufficient to outweigh the very 
slight gain in biotic potential which could be ob- 
tained by this means. This would not be the case 
if the pre-reproductive period was drastically 
shortened, so we see that even in the case of man 
there is an interaction of life-history phenomena 
such that the importance of any conceivable 
change can only be evaluated through consider- 
ation of the total life-history pattern. 

THE EFFECT OF TOTAL PROGENY NUMBER 

In  the preceding section we compared the two 
possible means by which an increase in total 
progeny number might lead to an increase in 
biotic potential. Our general conclusion was that 
the relative importance of changes in litter size 
and changes in the number of litters produced de- 
pends upon the rate of maturation. For species 
which mature early a modest change in litter size 
might be the equivalent of drastic changes in litter 
number but the possible value of iteroparity in- 
creases as the pre-reproductive part of the life span 

Age a t  f i r s t  reproduction (a) 

FIG.4. m~EFFECT M A ~ R I T Y  OF NATURALOF DELAYED ON THE INTRINSICRATE INCREASE 
The two broken lines represent semelparous species. The solid lines represent indehitely iteroparous species 

where each female, after producing her first litter of size b, produces another similar litter in every succeeding time 
interval. 
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is lengthened. The importance of discovering the 
age a t  which reproduction begins has commonly 
been overlooked by students of natural history, 
hence it appears worthwhile to explore the matter 
further by examining the actual values of the 
intrinsic rate of natural increase corresponding to 
specified patterns of reproduction. 

Fig. 4 was constructed from formula (21) to 
show, for several litter sizes, how the intrinsic rate 
of increase, r, is affected by lengthening the pre- 
reproductive period, a. Both semelparous (x  = 1) 
and indefinitely iteroparous (n = a) species are 
illustrated. The striking feature of Fig. 4 is the 
way in which the lines representing different litter 
sizes converge as a increases. This occurs whether 
there is a single reproduction per lifetime or an 
infinite number, hence it is a general phenomenon. 
This supplements our earlier conclusions by sug- 
gesting that in species where reproductive maturity 
is delayed there should be relatively slight selection 
pressure for increased litter size. Here we are re- 
ferring, of course, to the effective litter size or 
number of offspring which are capable of maturing. 
In  cases where early mortality is very high, as is 
known to be the case with many fishes, it might 
require a tremendous increase in fecundity to pro- 
duce a very small increase in effective litter size, 
and such increases might not be very important 
from the population standpoint. For example, a 
semelparous species reproducing a t  age 20 and 
with an effective litter size of 10 would have, 
r = 0.120. A ten-fold increase in litter size, to 
b = 100, would give r = 0.231 or an increase in 
biotic potential of 92 per cent. Another ten-fold 
increase to b = 1000 would give r = 0.345, or a 
gain of 50 per cent. The diminishing returns attain- 
able by increasing litter size are obvious. For an 
iteroparous species reproducing first a t  age 20 and 
thereafter in each subsequent time interval, the 
increase in effective litter size from 10 to 100 would 
give only a 50 per cent increase in biotic potential 
and a further ten-fold increase in litter size would 
increase r by only another 35 per cent. In  late- 
maturing species the litter size must be great 
enough to make it highly probable that some of 
the progeny will mature, but any further increases 
in fecundity will yield rapidly diminishing returns. 

I t  is also clear from Fig. 4 that for any fixed 
litter size the biotic potential could be increased by 
shortening the period of maturation. Any specified 
amount of decrease in the pre-reproductive period 
will, however, be most effective for species where 
this part of the life span is already short. 

Fig. 5 illustrates the way in which the two factors 
of length of the pre-reproductive part of the life 
span (a) and the number of offspring produced 
interact to determine the intrinsic rate of natural 
increase. These values were also computed from 
formula (21), in this case considering the litter size, 
b, as a constant with the value one-half. The figure 
then applies to species which, like man, produce one 
offspring a t  a time and where one-half of these 
offspring are females. Under these conditions i t  
obviously requires two births just to replace the 
parents, but the population consequences of pro- 
ducing more than two offspring per lifetime vary 
tremendously with the age a t  which reproduction 
begins. 

The female of the extinct passenger pigeon pre- 
sumably produced her first brood consisting of a 
single egg a t  the age of one year. From the steep 
slope of the line representing a = 1 in Fig. 5 it is 
clear that, beyond the minimum of two eggs per 
average female, several additional eggs produced 
in successive years would each add very appreci- 
ably to the value of r. Accordingly, a relatively 
slight reduction of the life expectancy for such a 
species might greatly reduce the biotic potential. 
The flattening out of the curves in Fig. 5 again 
illustrates the fact that each litter contributes less 
to potential population growth than the one pre- 
ceding it. However, in a case such as that of the 
passenger pigeon even the seventh and eighth 
annual "litters" would add appreciable increments 
to the value of r. 

Fig. 5 also shows that as the age a t  maturity 
increases the possible gains in biotic potential 
attainable by producing many offspring rapidly 
diminish. When a = 3, as in the economically 
important fur-seal, each pup contributes much less 
to biotic potential than was the case for the eggs 
of the passenger pigeon. Nevertheless, it is appar- 
ent from the figure that if the life expectancy for 
females should be reduced to seven or eight years 
(corresponding to the fifth or sixth pup), or less, 
the species would be in a vulnerable position. The 
curve is steep in this portion of the graph and 
relatively slight changes in average longevity 
could produce disproportionately large population 
effects. 

The lowest curves in Fig. 5 represent ages a t  
maturity falling within the possible range for man. 
The curves come close together as a increases, so 
that in this range a change of a year or two in the 
age a t  which reproduction begins is less significant 
than in the case of a species that matures more 
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FIG.5. THEEFFECTSOF PROGENY ON THE INTRINSIC INCREASEN U A ~ E R  RATEOF NATURAL WHEN THE 
LITTERSIZEIS ONE (b = x)

The ordinate scale shows the intrinsic rate of increase for species which produce an average of one-half female 
offspring per litter. For any given total progeny number, the intrinsic rate (7)  is seen to be greatly affected by 
the age (a)at which the first offspring is produced. 

rapidly. Furthermore, the curves flatten out 
rapidly so that families which are very large by 
ordinary standards actually contribute little more 
to potential population growth or to future popu- 
lation than do families of quite moderate size. As 
an explicit illustration consider the intrinsic rate of 
increase which would result if, on the average, 
human females produced their first offspring a t  the 
age of 20 and had a total of five children spaced a t  
one-year intervals. I n  this case we would have 
r = 0.042. If, on the other hand, we assume that, 
instead of producing only five children, the females 
could live forever producing a child each year we 
would obtain r = 0.0887. Under these conditions 
we conclude that in terms of biotic potential five 
children are almost one-half (actually 47 per cent) 
the equivalent of an infinite number. With larger 
values of a! the effect of very large families would 
be even further reduced. From these considerations 
the writer feels that human biologists, as well as 
other natural historians, often overemphasize the 
importance of total number of progeny while 

underestimating the significance of the age a t  
which reproduction begins. I t  is impossible to con- 
clude that one segment of the population is con- 
tributing more to future population than is some 
other segment without examining the total life- 
history pattern. Age a t  marriage could, in studying 
human populations, be a more significant datum 
than total family size. 

The foregoing discussion suggests that a species 
such as man which is characterized by a long period 
of maturation and a small litter size can exhibit 
considerable variability in the details of its life 
history without greatly affecting the intrinsic rate 
of natural increase. The population consequences 
to be anticipated if the average age a t  which 
reproduction begins were to be altered by a few 
years or if the average number of progeny per 
female were slightly altered are much less striking 
than is the case for many other species. This im- 
plies that the intrinsic rate of increase should be 
relatively constant over the range of possible 
variations in the life-history features for man. 
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Such a conclusion would seem to be of both practi- could be given, but these are sufficient to suggest 
cal and theoretical interest and to merit closer that the value of the intrinsic rate of increase for 
examination. man is not far from 0.03. 

The intrinsic rate of increase for man would be Fig. 6 was constructed from formula (21) in 
the rate of compound interest a t  which a human order to examine the question whether or not the 
population, unrestrained by environmental re- life-history features of man would actually lead 
sistance, would grow. We have already noted that us to anticipate the approximate value, r = 0.03. 
Franklin (1751) estimated that a human popu- Fig. 6 suggests rather definitely that the value 
lation could double in 20 years and that this would r = 0.02 is too low, since it  falls well below the 
correspond to r = .035. Malthus (1798) estimated obvious reproductive capabilities of humans. If 
that an unrestrained human population such as females, on the average, had their first child a t  the 
that of the United States a t  that time could double age of 12 years (which is possible, cf. Pearl, 1930, 
in 25 years. Malthus' estimate corresponds to p. 223) i t  would require an average of 2.6 surviving 
r = .0277 which is remarkably close to the value annual births per female to correspond to the rate 
of r = .0287 obtained by Lotka (1927) using much r = .02. This curve is quite flat, so that if the first 
more refined methods for estimating the rate of birth was delayed until the age of 20 years, which 
increase prevailing in 1790 in the United States. seems to be roughly the beginning of the semi- 
Pearl and Reed (1920) fitted a logistic curve to the decade of maximum human fertility (Pearl, 1939), 
population figures for the United States, and their three annual births would still be adequate to give 
equation gives the value r = .03134. Additional r = .02. Even if the h s t  birth is delayed until the 
examples of estimates based on empirical data age of 28 years, this intrinsic rate of increase calls 
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FIG. 6.  AVERAGEREPRODUCTIVEPERFORMANCES TO GIVE VALUESOF r,  THEREQUIRED SPECIFIED 
INTRINSIC INCREASE, POPULATIONSRATEOF NATURAL IN HUMAN 

Assuming the average number of female offspring per human birth to be one-half (b = 0.5),this graph shows 
the extent to which total progeny number would have to be altered to maintain a specified intrinsic rate of increase 
while shifting the age at  which reproduction begins. The figure also makes it possible to estimate the intrinsic rate 
of increase for a population when the average reproductive performance per female is known. 
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for an average progeny number of only 3.5. Clearly, 
man can easily exceed this average level of per- 
formance. On the other hand, the value r = .04 
seems to require reproductive performance which 
would be astonishingly high as an average condi- 
tion. If the first birth occurred when the mother 
was aged 13 years, an average of 3.5 children per 
female would suffice to give r = .04. However, the 
curve turns upward and if the first birth was 
delayed until the age of 20 i t  would require an 
average of 4.8 children to obtain this value. A 
delay of one more year, to the age of 21 for the first 
child, would increase the necessary mean progeny 
number to 5.0, while six children would be neces- 
sary if the first birth came when the mother was 
25 years old. This intrinsic rate of increase then 
seems to call for exceptional rather than average 
reproductive performance, and the writer believes 
that Fig. 6 would lead us to expect that the intrinsic 
rate of increase for man lies between the limits .02 
and .04 and might be estimated a t  about .03. Of 
course, the figure makes no allowance for mortality 
or for spacing the births a t  intervals of more than 
one year, so in actual cases the reproductive per- 
formance would have to be somewhat greater than 
indicated. The interval between births, however, is 
less critical than might be anticipated. The repro- 
ductive performances necessary to give r = .03 
are shown both for one-year spacing and for two- 
year spacing between births and, to the writer, a t  
least, either of these curves appears to represent a 
more reasonable picture of average human repro- 
duction than do the cases representing the higher 
and lower intrinsic rates of increase. 

THE POPULATION BIRTH-RATE AS A CONSEQUENCE 

OF LIFE-HISTORY PHENOMENA 

We have noted earlier formulas (4) and (5) 
which were originally derived by Lotka (1907a, b; 
Sharpe and Lotka, 1911) and which show that 
when life-history features remain constant from 
generation to generation the population will ulti- 
mately settle down to a "fixed" or "stable" age 
distribution and will exhibit a fixed birth rate. We 
have also noted that this conclusion could be ex- 
pected intuitively and can be obtained (formula 18) 
from discontinuous computational methods, once 
i t  is established that the potential form of popu- 
lation growth is a geometric progression. These 
potential consequences appear to provide the best 
justification for studying the life histories of vari- 
ous species, yet when such studies are conducted 

i t  is common practice not to attempt any interpre- 
tation in terms of population phenomena. 

I t  is evident from formulas (3), (4), and (5) that 
the birth rate and the stable age distribution are 
tied together with the intrinsic rate of increase and 
that any extensive discussion of the way in which 
changes in life-history features would affect these 
population features might repeat many of the 
points already covered. Consequently, we shall 
here note very briefly the relationships between 
life-history features and the resultant phenomena 
of birth rates and age structure. 

If we consider a "closed" population, which 
changes in size only through the processes of birth 
and death, i t  is apparent that the intrinsic rate of 

dP
increase, r, in formula (I),- = rP, must represent 

dx 
the difference between the instantaneous birth 
rate and the instantaneous death rate. In  practice, 
however, we are more interested in a finite rate of 
population change. If we employ formula (1') to 
express the rate of population growth and consider 
that the changes result entirely from the birth 
rate (BR) and the death rate (DR), we obtain: 

A birth rate, /3, appropriate to this approach has 
already been defined by formula (18). However, 
because we are dealing with finite time intervals 
the B, births regarded as occurring a t  the begin- 
ning of some time interval, T,, should properly be 
credited to the PSI individuals living in the previ- 
ous time interval. The birth rate would, there- 
fore, be: 

BR = er@. (27) 

On the other hand, the death rate should properly 
be the ratio of the D, deaths in interval T, to the 
total population exposed to the risk of death; that 
is D,/P,. Hence the simple relationship of formu- 
las (5) and (26) can be misleading, especially when 
there is a rapid population turnover. For example, 
the birth rate ,B in Lotka's formula (5) is by defini- 
tion identical with GO, the fraction of the population 
aged between zero and one. Consequently /3 can 
never exceed unity no matter how many offspring 
are on the average produced per individual during 
a time interval. 

In  practical population problems the crude 
birth rate is often observed and employed as a 
criterion of the state of the population. This 
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practice can be misleading, especially in comparing 
species which differ widely in their life-history 
features. I t  would be redundant to undertake a 
detailed analysis of the way in which life-history 
phenomena affect the crude birth rate because, as 
is evident from formulas (S), (26), and (27), any 
change which affects the value of r also affects the 
population birth-rate. However, the birth rate is 
subject to additional influences and these may be 
briefly examined. 

The methods used in computing the value of r 
(formulas 17, 21, and 22) have involved survivor- 
ship only out to the age w a t  which reproduction 
ceases. I n  species having a post-reproductive part 
of the life span, the crude birth rate corresponding 
to a given value of r will be reduced simply because 
post-reproductive individuals accumulate and are 
counted as part of the population on which the 
computations are based. I t  is clear, therefore, that 

any increase in longevity (A) which is not accom- 
panied by an increase in w will tend to lower the 
observed birth rate; conversely, the birth rate 
must affect the age structure of the population. 

If the maximum longevity for a species is A, a 
continued birth rate of l / h  would just suffice to 
leave a replacement behind a t  the time each 
individual dies. Hence 1/h represents an absolute 
minimum for a steady birth rate which is capable 
of maintaining the population. For example, if i t  
were possible to keep every human female alive 
for 100 years a birth rate as low as 0.01 or 10 births 
per thousand population per annum (assuming M 
of the offspring to be females), could theoretically 
suffice for population maintenance. However, for 
human females the value of w is not much beyond 
40 years; in general, if a female has not produced a 
replacement by the age of 40 she is not going to 
do so. The latter consideration might lead one to 

Length of l i fe ( A )  

FIG. 7. POPULATION TO DIFFERENT PATTERNSBIRTH RATES CORRESPONDING LIFEHISTORY 
The figure shows that the intrinsic rate of natural increase ( r ) , the birth rate, and mean longevity (A) are all 

interdependent. The broken line represents the minimum birth rate which would maintain a population if females 
did not survive beyond the age of 40 "years," which is here used as an estimate of the normal age (w) at which 
reproduction is concluded. As longevity is increased, slow population growth becomes possible even when birth 
rates fall below l/w. Such low birth rates, however, have sometimes caused unwarranted concern about excessive 
population increase when abnormal conditions have temporarily reduced the death rate so that there is a large 
excess of births over deaths. 
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designate as a minimum maintenance birth rate 
the value l / w ,  or 0.025 in the case of man. But 
i t  is clear from the foregoing sections that offspring 
produced prior to the time that a female reaches 
the age of 40 will already have begun to "accumu- 
late interest" before the mother can reach the age 
of 100. The compound interest nature of potential 
population growth complicates the relationship 
between birth rate and life-history phenomena 
and makes it conceivable that populations of 
species where X > w could even continue to grow 
while exhibiting birth rates lower than l /w.  

No end of interesting combinations of birth 
rates, death rates, and life-history phenomena 
might merit consideration, but a single simple 
example will be selected here to illustrate the 
general relationship between changing longevity 
and population birth-rates. If we assume, as be- 
fore, a physiological type of survivorship such that 
each individual that is born lives to attain its Xth 
birthday but dies before reaching the age of X + 1, 
we can sum the right-hand side of formula (19) as 
a geometric progression and combine this with 
formula (27) to obtain the following expression for 
the population birth rate (BR) : 

Formula (28) shows, as would be expected, that 
as longevity (A) is increased, with the other life- 
history features remaining unchanged, the birth 
rate will fall and approach as a limit the value er -
1, which is in accord with (26) when the death 
rate is set equal to zero. 

Fig. 7 was constructed from formula (28) to 
illustrate the interrelations between BR, r, and A 
within a range of values of life history features 
roughly applicable to man. The condition for a 
stationary population would, of course, correspond 
to r = 0, while all positive values of r correspond 
to growing populations. r must become negative 
when the birth rate falls below 1/X, and it will be 
noted that the birth rates below about 20 per 
thousand which are sometimes observed in human 
populations (see tabulation in Allee et al., 1949, 
p. 288) must, unless they represent abnormal 
temporary phenomena, correspond to populations 
with very low potential growth rates. The curve 
for r = .005, in fact, does not differ greatly from 
1/X. The curves in Fig. 7 flatten out rapidly for 
large values of A, so that drastic and generally 
unattainable increases in longevity would be re- 

quired to make such low birth rates compatible 
with appreciable population growth. 

Looking a t  these relationships from a different 
point of view, Fig. 7 shows that a reduction in 
longevity, such as might result from reducing the 
life expectancy of game animals, can be expected 
to result in an increased birth rate even if the 
intrinsic rate of increase is unchanged. I t  does not 
seem worthwhile a t  present to attempt a quantita- 
tive estimate of these relationships because the 
assumption of a physiological type of survivorship 
curve is probably not even approximately true for 
game animals. When more realistic estimates of 
survivorship are available, however, the type of 
relationship illustrated in Fig. 7 may assume 
practical importance. 

THE STABLE AGE DISTRIBUTION 

The age structure of a population often is a 
matter of considerable practical concern. In  eco- 
nomically valuable species such as timber, game 
animals, and commercial fishes certain age classes 
are more valuable than others, and it would be 
desirable to increase the proportion of the most 
valuable age classes in a population. Similarly, 
certain age classes of noxious organisms may be 
more destructive than others and the relative 
numbers of these destructive individuals will be 
governed by life-history phenomena which may 
conceivably be subject to alteration by control 
measures. In human populations, also, it is some- 
times a matter of concern that the proportion of 
the population falling within the age limits most 
suitable for physical labor and military service 
seems to be below optimum. An article in the New 
York Times for September 24,1950, headed "popu- 
lation shift in France traced-Study finds too 
many aged and very young in relation to total of 
workers" illustrates the potential importance of a 
knowledge of the age structure of populations. 

The mathematical basis for relating the age 
structure of a population to life-history features 
was established in Lotka's first paper on popula- 
tion analysis (1907); and in the same year Sund- 
barg (1907) reached the conclusion that a human 
population reveals its condition (tendency to grow 
or decline) through its age structure. These im- 
portant conclusions have not been sufficiently 
noted by ecologists. When the mortality factors 
affecting a population are altered either through 
natural environmental changes or through human 
exploitation or attempts a t  control there will in 
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general result a change in the age structure of the may employ formulas ( 5 )  and (28) directly to 

population, and this may be observable even before obtain, for x < A: 

changes in population size or in birth rates provide e-rz(l - er)

evidence of the consequences of the changed C. = 1 - e-rX ' (29) 

mortality factors. The subject of age structure is a 

large and difficult one because the various combha- From formula (29) it is apparent that if the ex- 

tions of life-history features, birth rates, death treme longevity for a population is altered without 

rates, and age structure are analogous to a multi- changing the intrinsic rate of increase, the effect 

dimensional figure where a change imposed in any 0" the age structure will be of a very simple type- 

one feature induces changes in all of the others. An increase in longevity from A1 to A2 will simply 

The subject has been considered most in connec- reduce the proportion of the ~ o ~ u l a t i o n  
in each age 
tion with human populations, and some empirical category below A1 by the constant proportion 
generalizations have been obtained which may - Pxl 

. Consequently, the effect will be most 
profitably be examined by means of the computa- 1 - ecrXz 
tional methods we have been employing. For the noticeable on the youngest age classes, because 
purpose of illustrating the general character of the these are the largest classes. 
relationships involved, one species will serve as Changes in the value of r affect the stable age 
well as another. distribution in a more complex way than do 

For illustrative purposes we may proceed as in changes in A, although the general result of increas- 
the preceding sections and consider the stable age ing the value of r will be to increase the proportion 
distribution for cases where survivorship is of the of young in the population, with a corresponding 
physiological type. Lettingc, represent the fraction decrease in the proportion of older individuals. 
of the population aged between x and x + 1, we Fig. 8 illustrates this effect for three values of r, 
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FIG.8. THE STABLE AGE DISTRIBUTION, OF THE POPULATION WITHIN EACH INTERVALOR PROPORTION FALLING OF 

AGE,IS SHOWN OF THE INTRINSIC OF INCREASE OF LIFE(A)HEREAS A FUNCTION RATE (7) AND THE LENGTH 
These relationships have important ecological correlaries. See text for a discussion relating these to the "opti- 

mum yield" problem. 

50 
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assuming that X in formula (29) remains constant 
a t  80 "years." 

The way in which population age-structure is 
affected by changes in the value of r and A, as 
illustrated by formula (29) and Fig. 8, permits 
some qualitative conclusions which are of interest 
in connection with the "optimum yield problem" 
(for discussion, see Allee et al., 1949, p. 377). If 
man (or some other species) begins exploitation of 
a previously unexploited population, the age struc- 
ture will be affected in a definite manner. An 
obvious result of increased predation will be to 
decrease the average longevity, corresponding to a 
decrease in X. We have seen earlier (Fig. 7) that 
this will ordinarily have the effect of increasing the 
population birth rate, and Fig. 8 and formula (29) 
show that another effect will be to increase the 
proportion of young in the population, the very 
youngest age classes being most affected. How- 
ever, the increased mortality may also affect the 
value of r. If the population is initially in equilib- 
rium with the capacity of its environment, its total 
life history pattern will be adjusted to the effective 
value, r = 0. If exploitation is not too intense, it 
has the effect of making additional environmental 
resources available to the surviving members of the 
population and thus of stimulating population 
increase; the population "compensates" (see 
Errington, 1946) for the increased mortality by 
increasing the value of r. Fig. 8 shows that this 
will have the effect of increasing the proportion of 
young in the population, thus supplementing the 
effect of exploitation on X. On the other hand, the 
increase in r will have the effect of reducing the 
proportion of aged individuals in opposition to the 
effect of reduced X which is to increase all of the 
age classes which still persist. I t  seems clear that 
the most obvious population consequence of such 
exploitation will be to increase the proportion of 
young members of the population. If predation or 
exploitation becomes still more intense, as in the 
case of "overfishing" (Russell, 1942), i t  will reduce 
the effective value of r, and, of course, still further 
reduce average longevity. The decrease in r will 
tend to decrease the proportion of young individ- 
uals, but the decrease in X will tend to increase this 
proportion. However, both changes will tend to 
raise the proportion of older individuals in the 
population, and this combined effect can then be 
expected to be the most obvious corollary of over- 
fishing. These conclusions, of course, greatly over- 
simplify a complex phenomenon. In  order to make 

quantitative estimates of these effects it would be 
necessary to have detailed information about the 
life-history features, especially survivorship under 
the conditions of increased predation. Neverthe- 
less, these qualitative conclusions show the type of 
effect to be expected when populations are sub- 
jected to increased predation, and they suggest 
that observations of the changes in the age struc- 
ture of populations may provide valuable evidence 
of over-exploitation, or, from the opposite point of 
view, of the effectiveness of control measures. 
Bodenheimer (1938) comments on the fact that 
ecologists have neglected this important subject. 

From Fig. 8 it will be noticed that changes in 
life-history features produce their greatest effects 
on the extreme age classes, whereas the curves 
representing different patterns are close together 
in the "middle" age range. The same phenomenon 
is evident, for example, in a graph (Fig. 27) repro- 
duced by Dublin, Lotka, and Spiegelman (1949) 
from Lotka (1931) to show the age structure of 
human populations corresponding to stationary, 
increasing, and decreasing populations. This sug- 
gests that the proportion of a population falling in 
the middle portion of the life span may be relatively 
independent of factors which produce drastic 
shifts in the ratio of very old to very young. This 
was first postulated by Sundbarg (1907), who con- 
cluded that i t  was "normal" for about 50 per cent 
of a human population to fall in the age range 
between 15 years and 50 years. Sundbarg dis- 
tinguishes three primary population types based on 
the age distribution of the remaining 50 per cent 
of the population. In  the "progressive" type of 
population there is a strong tendency for increase 
and the ratio of young (aged under 15) to old 
(aged over 50) is, by Sundbarg's criteria, about 40 
to 10. In  the "regressive" type, exhibiting a 
tendency toward population decrease, the corre-
sponding ratio of young to old is about 20 to 30, 
while a "stationary" type with the ratio about 33 
to 17 shows no particular tendency either to grow 
or to decrease. When first encountered Sundbarg's 
conclusion appears surprising, but in actual human 
populations differing as radically, for example, as 
those of Sweden and India, the proportion of the 
population aged between 15 and 50 is remarkably 
close to 50 per cent (see tabulation in Pearl, 1946, 
p. 78). I t  appears to the writer that this conclusion 
should be of great interest to students of human 
populations. The age class between 15 and 50 years 
includes the bulk of the workers and persons of 



POPULATION CONSEQUENCES OF LIFE HISTORY PHENOMENA 131 


military age, and Sundbarg's conclusion implies 
that the size of this class relative to the remainder 
of the population must be determined by life- 
history features which cannot readily be deliber- 
ately controlled. 

For other species also, the life span may be 
meaningfully divided into three primary age 
classes, pre-reproductive (aged 0 to a ) ,  reproduc- 
tive (aged a! to w), and post-reproductive (aged w 
to X), which differ considerably in their biological 
significance. If we continue with our assumption 
of physiological survivorship we can obtain the 
relative sizes of these three age classes directly 
from formula (29), and Sundbarg's generalization 
offers an interesting empirical pattern with which 
to compare our results. For the relative sizes of the 
three fundamental age classes formula (29) gives: 

}
Reproductive = 

e;--e:r 
(30) 

By putting a = 15 and w = 50, we may examine 
the relationship between r and X for Sundbarg's 
primary population types. 

The generalization that about 50 per cent of a 
human population normally falls in the age range 
from 15 to 50 is in accord with formulas (30). 
When r = .03 the value of X to give a stable age 
distribution with just 50 per cent in the middle age 
range would be 59 years, but an increase in lon- 
gevity to 85 years would only reduce this class to 
45 per cent of the population. The same general 
conclusion applies when r is small. The values r = 
.005 and X = 63 years correspond to 55 per cent 
aged 15 to 50 years, and X would have to be in- 
creased to 81 years to reduce this to 45 per cent. 
It appears that over the usual range of values of 
human longevity and potential population growth 
Sundbarg's generalization is very good. This is 
shown graphically in Fig. 9. I t  is noteworthy that 
when the length of life is about 70 years, Sund- 
barg's generalization holds over a wide range of 
values of r. In  other words, this ratio of "middle- 
aged" to total population is quite insensitive to 
changes in other life history features. 

Figure 9 illustrates Sundbarg's population 
criteria for values of r > 0. I t  is clear that the 
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FIG. 9. SUNDBKRG'S CRITERIAPOPULATION IN 
RELATION FEATURESTO LIPE-HISTORY 

The "middle age" range here consists of individuals 
aged 15 years to 50 years. 

"regressive" type of population structure is not 
consistent with populations possessing a strong 
tendency to increase and, in fact, for usual lon- 
gevity figures, will ordinarily correspond to de-
creasing populations (r < 0). On the other hand, 
the "progressive" type of structure does corre-
spond to large values of r even when X is not 
particularly large. The "stationary" type of popu- 
lation structure is less well defined. Any population 
for which the life-history features correspond to 
r > 0 will tend to grow, and the ratio of two "old" 
to one "young" can correspond to a large value of 
7 when X is large. The value of r is, of course, 
independent of the length of the post-reproductive 
part of the life span, whereas the age structure is 
not. For any given value of r, which is determined 
by the life-history features of individuals aged 
below w, the effect of an increase in longevity will 
be to decrease the proportion of young and, to a 
lesser extent, the proportion of reproductive mem- 
bers of the population. 

At first glance, the type of interactions shown in 
Fig. 9 might suggest that if the age structure of a 
population were artificially shifted in the "regres- 
sive" direction, for example, through migration or 
improvements in public health, there would result 
a reduction in the value of r. This, however, is not 
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the case, since r is completely determined by life- 
history events occurring before age o.Sharpe and 
Lotka (1911) showed that a characteristic of the 
"stable" age distribution is the fact that i t  will 
become reestablished after temporary displace-
ments. However, practical problems arise in 
analyzing actual populations because phenomena 
such as birth rates and death rates may give a 
very misleading picture of population trends when 
the age structure is displaced from the stable type 
and has not yet had time to reestablish a stable 
age distribution. From Fig. 7 we have noted that 
in human populations birth rates on the order of 
20 per thousand per annum would in general be 
little more than sufficient to maintain a popula- 
tion. But if the age distribution is displaced from 
the stable type in the direction of increased fre- 
quency of young individuals, the death rate may 
be temporarily reduced, so that there is a great 
excess of births over deaths and the population 
can grow temporarily even if the age-specific 
birth rates are too low to maintain the population 
permanently a t  a constant size. Under these condi- 
tions the population is "aging," and in human 
populations this phenomenon has a number of 
interesting and important corollaries (see Dublin, 
Lotka, and Spiegelman, 1949). Fisher (1930) has 
considered the problem in a more general sense, 
noting that the apparent value of r given by 
formula (3) will be incorrect when the age structure 
is displaced. Fisher suggests the possibility of 
measuring population size not in terms of the 
number of individuals present but in terms of 
"reproductive value," where the "value" of an 
individual represents his remaining potentialities 
for contributing to the ancestry of future genera- 
tions. Some such approach has great potential 
value for ecological studies of natural populations, 
but its possibilities in this direction seem not yet 
to have been explored. 

EMPIRICAL APPLICATIONS 

In  the preceding sections we have been con-
cerned with the influence of specific life-history 
patterns on the characteristics of populations. In 
order to examine these effects we have made 
simplifying assumptions by regarding some of the 
life-history features as fixed in a certain way while 
we examined the results of varying other features. 
While this procedure oversimplifies the biological 
situation as it exists in actual populations, the 
writer regards it as a sound way of investigating 

the meaning of life-history features. The same 
general attitude may be traced back to Robert 
Wallace (1753) in his book which profoundly 
influenced Malthus. Wallace pointed out that 
"mankind do not actually propagate according to 
the rules in our tables, or any other constant rule 
..." but he emphasized that tables of potential 
population growth are still valuable because they 
permit us to evaluate the influences restraining 
population growth. 

Wallace, then, was a pioneer in appreciating the 
potential value of comparisons between empirical 
and theoretical population phenomena. In modern 
actuarial practice, population data are subjected 
to involved mathematical treatments which are 
sometimes considered to represent biological laws 
and a t  other times to be merely empirical equa- 
tions, but which, in any case, are known to yield 
results of practical value. In  the words of Elston 
(1923, p. 68): 

". . .it seems to me that even though there be governing 
causes of mortality that may result in a true law of 
mortality, any group of lives studied is so heterogene- 
ous, due to differences in occupation, climate, sanitary 
conditions, race, physical characteristics, etc., that any 
formula must in practice be considered to be merely a 
generalization of what is actually happening." 

The number of different combinations of life-
history features of the type we have been discussing 
is essentially infinite, and i t  is out of the question 
to make detailed examinations of any great pro- 
portion of these from the theoretical standpoint. 
However, we have seen that certain population 
features, such as the prevailing age distribution 
and the intrinsic rate of increase, summarize a 
great deal of information about the potentialities 
of the population and its relationship to its particu- 
lar and immediate environment. As mentioned 
earlier, the recent ecological literature demon-
strates that ecologists are becoming interested in 
determining such features as the intrinsic rate of 
increase for non-human populations. These compu- 
tations may have practical value in dealing with 
valuable or noxious species, and they possess great 
theoretical interest for ecologists. For example, the 
logistic equation has been widely employed to 
represent population growth in a variety of organ- 
isms (411ee et al., 1949; Pearl, 1927); and it has 
also been attacked (Yule, 1925; and succeeding 
discussion, Gray, 1929; Hogben, 1931; Smith, 
1952), on the grounds that it is too versatile and 
can be made to fit empirical data that might arise 
from entirely different "laws" of population 
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growth. This criticism is, of course, directed a t  the 
fact that the curve-fitter has three arbitrary con-
stants a t  his disposal in seeking to obtain a good 
fit. One of these constants is 7, the intrinsic rate 
of increase. The grounds for accepting or rejecting 
the logistic equation as a law of population growth 
(or for seeking some other law) would be greatly 
strengthened if the value of r was computed di-
rectly from observed life-history features and inde-
pendently of the data on population size. 

The computational methods employed in the 
preceding sections suggest several possible ways of 
computing the value of r from empirical life-history 
data. The usual procedure for such computations 
has been a tedious one based on formula (3) (see 
Lotka's appendix to Dublin and Lotka, 1925), 
although Birch (1948) employed formula (17) as 
an approximation to (3) for his computations. The 
methods discussed in the preceding sections sug-

gest that a logical procedure for obtaining an 
empirical value of r would be to observe age-
specific birth rates and survivorship under the 
environmental conditions of interest, and from 
these to write a "generation law" so that formula 
(11) can be employed. The single positive root of 
(11) is e' and this can be estimated to any desired 
degree of accuracy without great difficulty even 
for species where the reproductive life is prolonged. 
When one is actually solving equation (11) it  is 
strikingly brought to one's attention that the final 
terms representing reproduction in later life are 
relatively unimportant in influencing the value of r. 
This once again reinforces our conclusion that 
reproduction in early life is of overwhelming im-
portance from the population standpoint, and 
should be much more carefully observed in field 
and laboratory studies than has usually been 
the case. 
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An alternative approach for obtaining empirical 
values of r consists of fitting the V, (= l,b,) values 
with mathematical curves of types which make i t  
possible either to obtain the sum of the series on 
the right-hand side of equation (19) or to employ 
Laplace transformations to solve equations (3) or 
(20) by simple iterative methods. Different formu- 
las could be fitted to different sections of the V, 
curve, and, when good fits can be obtained with 
combinations of straight lines, step-functions, 
exponential functions, and other simple formulas, 
this procedure will often lead to easy ways of solv- 
ing for r. As a very simple example of this pro- 
cedure we may consider the data of Birch (1948), 
for which he employed formula (17) and, by com- 
putations which are given in detail in his paper, 
obtained the value r = 0.762. 

The V, data employed by Birch are shown 
graphically in Fig. 10 by means of the black dots. 
The two curves, a straight line and a simple ex- 
ponential function, were fitted by the method of 
least squares to the values up to x = 13.5. Neither 
of the functions gives an extremely good fit to 
the observed data, but, on the other hand, one may 
question whether the irregularities in the empirical 
data are not partly artifacts which should be 
smoothed out when one is attempting to estimate 
the value of r for a species. In  any case, it appears 
worthwhile to compare Birch's value of r = .762 
with that obtained by use of the empirically fitted 
curves. 

Using first the exponential curve, if we set 
V, = Keaz, formula (19) may be written in the 
form: 

When reproduction occurs several times, so that n 
is fairly large, the denominator in equation (31) 
becomes for practical purposes unity and may be 
ignored. In  this case we have a! = 4.5, K = 30.74, 
a = -.123, and n = 9, so we will ignore the 
denominator. The equation is easily solved by 
iterative means, using a table of the exponential 
function, and the value obtained is r = .758, which 
differs from Birch's value by about one-half of 
one per cent. 

The right-hand side of equation (19) can also 
be summed for the linear case where V, = a + bx, 
but in this case the Laplace transformation em- 
ployed with formula (3) yields a slightly simpler 
equation: 

Putting a = 22.66, a! = 4.5, and b = -1.3 in equa- 
tion (32), and solving by iterative means we obtain 
r = .742, which differs from Birch's value by 
nearly three per cent, although this seems to be 
good agreement in view of the crude approxima- 
tions employed. 

In  many practical applications dealing with 
natural and experimental populations some ap- 
proximation to the value of r such as those pre- 
sented above may be all that can be justified by 
the accuracy of the data. The estimate of r could 
undoubtedly be improved by fitting different por- 
tions of the V, curve with different functions. 
Another refinement suggested by observations 
presented earlier in this paper would be to fit the 
empirical curves by a method which would give 
greater weight to the earlier points which have 
more influence on the value of r than do the later 
points. Any detailed discussion of these empirical 
applications would be out of place in the context 
of the present paper. The writer, however, antici- 
pates that ecologists will in the future devote more 
attention to the interrelations of life-history fea- 
tures and population phenomena, and it is to be 
hoped that some of the approaches which have been 
indicated will accelerate trends in this direction. 

SUMMARY 


Living species exhibit a great diversity of pat- 
terns of such life-history features as total fecun- 
dity, maximum longevity, and statistical age 
schedules of reproduction and death. Correspond- 
ing to every possible such pattern of life-history 
phenomena there is a definitely determined set of 
population consequences which would ultimately 
result from adherence to the specified life history. 
The birth rate, the death rate, and the age com-
position of the population, as well as its ability to 
grow, are consequences of the life-history features 
of the individual organisms. These population 
phenomena may be related in numerous ways to 
the ability of the species to survive in a changed 
physical environment or in competition with other 
species. Hence i t  is to be expected that natural 
selection will be influential in shaping life-history 
patterns to correspond to efficient populations. 

Viewed in this way, comparative studies of life 
histories appear to be fully as meaningful as 
studies of comparative morphology, comparative 
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psychology, or comparative physiology. The 
former type of study has, however, been neglected 
from the evolutionary point of view, apparently 
because the adaptive values of life-history differ- 
ences are almost entirely quantitative. The recent 
ecological literature does show a trend toward the 
increasing application of demographic analysis to 
non-human populations, but the opposite approach 
of deducing demographic consequences from life- 
history features has been relatively neglected. The 
present paper is presented with the hope that this 
situation can be changed. I n  other fields of com-
parative biology it  is usual to examine individual 
characteristics and to regard these as possible 
adaptations, and the writer believes that  life-
history characteristics may also be profitably 
examined in this way. 

I t  is possible by more or less laborious methods 
to compute the exact size and composition of the 
population which a t  any future time would be 
produced by any given initial population when the 
life-history pattern of the individual organisms is 
regarded as fixed. Thus it  is possible to make an 
exact evaluation of the results of changing any 
life-history feature, and the value of this type of 
analysis may be apparent to those biologists who 
distrust the usual demographic procedures. 

Starting with exact computational methods, it 
has been shown that early population growth may 
exhibit irregularities or cyclic components which 
are identifiable with negative or complex roots of 
an algebraic equation, but that these components 
vanish in time so that potential population growth 

is ultimately a geometric progression. Having 
established this fact, i t  is shown that the exact 
computational methods and the more convenient 
approximate methods lead to identical conclusions 
when considered over the long time scale which is 
of interest in adaptational and evolutionary con-
siderations. 

Some life-history patterns of ecological interest 
are examined and compared by means of relatively 
simple formulas derived from a consideration of 
the form of potential population growth. The 
results have bearing on the possible adaptive 
value of genetically induced changes of life-history 
features. I t  is suggested that this type of approach 
may add to the value of life-history studies and 
that an awareness of the possible meanings of 
empirical life-history data may aid in planning 
such studies by insuring that all pertinent informa- 
tion will be recorded. One of the most striking 
points revealed by this study is the fact that the 
age a t  which reproduction begins is one of the most 
significant characteristics of a species, although it 
is a datum which is all too frequently not recorded 
in the literature of natural history. 

The number of conceivable life-history patterns 
is essentially infinite, if we judge by the possible 
combinations of the individual features that have 
been observed. Every existing pattern may be 
presumed to have survival value under certain 
environmental conditions, and the writer con-
cludes that the study of these adaptive values 
represents one of the most neglected aspects of 
biology. 
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